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We are in the midst of a digital revolution where 
smarter and more connected devices are becom-
ing available on an almost daily basis. While 
this transformation across industries is largely 
advantageous for society and the economy, 
we are nonetheless confronted with new chal-
lenges that still need to be overcome. Process 
optimization, predictive maintenance, stability 
and risk assessment, and environmental consid-
erations are just a small selection of the many 
topics that need to be addressed in light of this 
transformation. 

This article commences with the identification 
of key issues linked to smart and connected 
devices, before introducing the concept of  
digital twins that provide solutions to many of 
the most pressing challenges. Furthermore, we 
will discuss implementation processes and close 
with our vision of the way forward.
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The world of machines is becoming increasingly 
smarter and more connected. Devices continue to 
operate interconnected, if not already entirely autono-
mously, while interacting with other devices and their 
environment in a complex fashion. This progress is  
visible in day to day life when comparing a phone, lap-
top, or television from ten years ago with current mod-
els or when comparing past and current production 
processes in the manufacturing industry. The latter 
especially applies with regard to products such as cars 
or electronics. Devices have inevitably become more 
complex, autonomous and self-organized, which will 
continue to be the trend for years to come as the use 
of AI continues to rise. 

While technological advancements open a wide range 
of exciting opportunities in many areas, society, as well 
as most businesses, significantly benefit from many 
– though not all – new developments in this field. 
However, we regularly face different and formerly 
unseen challenges that need to be overcome. Most 
of these challenges are directly linked to the large and 
ever-growing number of personal devices, their inher-
ent complexity, the convolution of their interactions, 
and the increasing level of integration that is enabled 
by progressing technologies and digitalization, as the 
following examples illustrate. 

Process optimization

The complexity of a system of interacting devices inev-
itably scales with the number of independently act-
ing entities, i.e., the number of smart and connected 
devices in a particular system. While this may take the 
burden off having to tediously engineer respective pro-
cesses from a top-down perspective and in much detail, 
such self-organization comes at the price of reduced 
insight into how individual tasks are executed and con-
trolled. The system acts as a black box to some extent. 
Direct control of processes – and especially how eco-
nomically these processes can be executed – is limited 
or entirely lost. 

The challenge of process optimization can be illustrated 
by a typical example in manufacturing, as follows: 
Imagine a smart warehouse operating a fleet of auton-
omously self-driving vehicles that transport machine 
parts to an attached factory for assembly in sequence 
and in time. With growing numbers of individual items 
being delivered, parts may not reach the production line 
on time and cost-intensive delays could ensue. An obvi-
ous and straightforward way to tackle this issue is to 
simply increase the number of vehicles. However, while 
this is likely to reduce delays, it will not solve the under-
lying problem of the way the process is organized. By 
doing so, the problem is not approached with the intent 
to eliminate the root cause, but only to postpone it to a 
later date when it will have to be solved with far greater 
effort and, likely, at a higher cost.

Predictive maintenance

With devices becoming smarter and more autonomous 
on one hand and featuring greater intrinsic complex-
ity and higher levels of integration on the other, the 
need for human interference and oversight is greatly 
reduced in a purely operational context. This can be 
exemplified by the above case of a smart warehouse 
which only requires minimal human oversight, or the 
example of a modern car compared to a car from one 
hundred years ago. Back then, a trained mechanic was 
required to maintain the car on a regular and frequent 
basis; nowadays cars do not need to be serviced as 
frequently, despite the multitude of functions present 
in modern cars compared to older models, especially 
when taking into account standard features such as 
infotainment systems, air conditioning, and so on.

While reducing human oversight, the elevated intrin-
sic complexity of devices and device longevity cer-
tainly comes with great advantages in many cases, but 
maintenance becomes more challenging and poten-
tially cost-intensive. Firstly, with little oversight, defects 
may either initially go unnoticed and result in higher 
costs when detected at a later stage, or unnecessary 
costs may potentially be incurred through too-fre-
quent check-ups. Secondly, it may be challenging or 
even impossible to test and service certain features of 
a modern integrated device. In the latter context for 
instance, Li-ion batteries are difficult to repair if bro-
ken, and measuring the exact state-of-health of a bat-
tery in operation remains difficult.

Stability and risk assessment

Quite rightly, highly interconnected systems give rise 
to stability concerns and demand comprehensive risk 
assessments. With greater self-organization in smart 
and autonomous systems, even small deviations from 
standard scenarios may trigger chain reactions with 
results that potentially have not been anticipated. 
Another concern is the vulnerability of a system to 
cyber-attacks.

In the case of our exemplary smart factory, one  
may ask what happens if a self-driving vehicle fails to 
operate? What happens if two vehicles fail simultane-
ously? Answering these questions is more challenging 
in a modern production context than it was only few 
years ago.

Environmental considerations

Last but certainly not least, the consideration of envi-
ronmental aspects is vital, though often complex, in 
highly interconnected and autonomous systems that 
are designed in a bottom-up fashion. We have seen 
above that optimizing processes in regard to economic 
and efficiency targets may be difficult due to a lack of 
insight into process details. In the context of environ-
mental targets, such optimization processes may even 
be more challenging as it is difficult to gage success. 
It is inarguably more difficult to quantify the carbon 
emissions of a production process in a cradle-to-grave-
type fashion than to measure the respective return of 
an investment or speed of production. 

In our example of a smart warehouse, we saw that 
processes can be challenging to optimize concerning 
economic or efficiency targets. However, an environ-
mental analysis might include finding the environmen-
tally optimal usage of the batteries used in self-driving 
vehicles, which is a significantly more demanding task 
compared to optimizing the operating efficiency of 
vehicles.

We emphasize that these are just four examples of 
challenges that arise from digital transformation 
through the use of smart and connected devices, and 
associated issues are more diverse. 

The following section discusses the concept of a 
digital twin, a relatively new concept that can easily 
be exploited to tackle the above problems in many 
ways. Please note that we have briefly mentioned the 
concept of digital twins in the context of the quality 
control of complex systems elsewhere [1]. A compre-
hensive analysis of the opportunities that digital twins 
offer with regard to batteries in electric mobility can be 
found in prior literature [2].

Introduction
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Figure 1: Basic structure of a digital twin. Please note that in application, the 
information exchange between the different entities can be significantly more 
comprehensive and complex as insight gained by the user through the digital twin 
may be fed back into the operation of the physical entity and the digital twin.
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The idea of the digital twin was largely developed by 
Michael Grieves and others in the early 2000s. On the 
basis of real-time data, it aims to create real-time rep-
resentations of physical entities that reflect features of 
interest without the actual physical entity having to 
be analyzed. Therefore, the digital twin can be under-
stood to be a virtual counterpart of a real-life entity 
which mirrors its state and operation. In 2016 Grieves 
and Vickers [3] defined the digital twin as follows:

“The Digital Twin is a set of virtual information con-
structs that fully describes a potential or actual physi-
cal manufactured product from the micro atomic level 
to the macro geometrical level. At its optimum, any 
information that could be obtained from inspecting a 
physical manufactured product can be obtained from 
its Digital Twin.“

Grieves and Vickers then proceed to distinguish digital 
twin prototypes and instances, which we will briefly 
discuss in the narrow context below. It is important to 
differentiate between a digital twin according to this 
definition and a simple collection of data representing 
a physical entity. The interested reader should refer to 
the original study [3] for full details.     

A more comprehensive literature review reveals that 
various other definitions exist by other authors, which 
are similar, and typically comprise three key elements 
as illustrated in Figure 1, which are outlined below.

The physical entity

In the context of the digital twin approach, a physical 
entity of interest is mirrored by the digital twin. This 
entity may feature any physical dimensions and any 
level of complexity, so there are no limitations regard-
ing the nature of the modeled entity. The sole require-
ment is that sufficient data is gathered to describe the 
entity features to be reflected, i.e., the data recorded 
must correlate with these features in a way so that 
the desired information can be inferred. If a statisti-
cally relevant number of similar digital twins exists in a 
particular context, even future physical entities may be 
modeled, if desired. 

The digital twin

The digital twin is a model of a physical entity that 
lives in the virtual world. It captures one or multiple 
relevant features of its counterpart and provides the 

means to share information of interest with the per-
son operating it. The shared information can then be 
exploited in a broad range of contexts, as discussed 
below. A digital twin is herein always an abstraction 
of its real-world counterpart as its features can only 
be represented to a limited degree of detail. The level 
of abstraction is mostly dependent on two factors: the 
availability of data and the purpose of the digital twin. 
While the first inevitably sets boundaries to the degree 
of detail that can be achieved with the digital twin and 
can be adjusted by collecting more or different data, 
the latter must be carefully evaluated for each case. 
Higher degrees of abstraction are generally preferable 
for simplicity and cost efficiency as long as the abstrac-
tion does not restrict the intended purpose.

Information exchange

It is possible that the most vital element is the con-
tinuous exchange of information between the phys-
ical entity and the digital twin. In order to be a true 
representation, changes in the physical entity must 
be considered in the digital twin as the digital twin is 
continuously updated. To this end, the physical entity 
is equipped with suitable sensors to monitor its activ-

ity and state as well as appropriate interfaces to share 
this information with the digital twin. In some cases, 
communication may be bidirectional to facilitate the 
gathering of only the most vital information where, for 
instance, bandwidth is a limiting factor.

The above definition is broadly applicable on all 
scales; It covers the modeling of an entire factory, for 
instance, or only a single, small element in the same 
factory. For clarity and focus, the scope of the fol-
lowing discussion is therefore limited to ensembles of 
similar physical entities that are each modeled individ-
ually by a respective individual digital twin. For exam-
ple, this could be a fleet of cars with every car being 
represented by a digital twin. Hence, this approach is 
used as a tool to understand how an individual smart 
and connected device of which many instances exist, 
functions, interacts, and evolves across its entire life 
cycle (see Figure 2). In this context, we can leverage 
domain knowledge, information gathered across the 
entire ensemble of similar physical entities, and his-
torical information that may have been recorded long 
before an individual physical entity was even produced 
in order to create even more accurate digital twins. In 
emerging technologies such as the Internet of Things 

The digital twin 
– an overview
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(IoT) and the Industrial Internet of Things (IIoT), the 
concept of ensembles of digital twins has received 
overwhelming attention. And, despite its novelty, it is 
already broadly acknowledged as an important way 
forward for apparent reasons beyond those mentioned 
above. In Industry 4.0, devices are always connected, 
usually equipped with sensors – often smart – and 

mostly mass produced. The concept of a digital twin 
or ensembles can therefore often be readily applied 
without having to implement major changes, or any 
changes at all, to the hardware. In this context, the 
approach further unfolds its full potential regarding 
the modeling and planning of future scenarios. Once 
an understanding of the operation of an ensemble of 

entities has been achieved, the respective model can 
be easily extended to include future entities and may 
evolve into a powerful planning tool.

So far, we have defined the concept of a digital twin 
and ensembles of digital twins. In the following sec-
tion we will take a closer look at the anatomy of the 

virtual model and compare and contrast different 
approaches.

Figure 2: The structure of an ensemble of digital twins. Experience and acquired 
knowledge can be leveraged across the fleet by an information exchange between 
the individual digital twins that is enabled by a shared data lake.
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One of the greatest challenges in designing a dig-
ital twin is the development of a virtual model that 
matches the requirement of the given task. The model 
must accurately infer, or at least estimate, the desired 
information on the respective physical entity on the 
basis of the data available, however the model does 
not necessarily need to reflect this information in a 
straightforward fashion. To illustrate this challenge, let 
us contemplate two examples. First, let us consider an 
arc welding robot that assembles metal components in 
a factory and its digital twin. One of several purposes of 
the digital twin is to briefly pause the production pro-
cess for recalibration if the temperature of the welding 
electrode falls below or exceeds certain temperature 
thresholds. To this end, the temperature is measured 
continuously at the electrode, transmitted to the dig-
ital twin, and an automated computational analysis 
of the digital twin triggers maintenance, if required. 

The digital twin receives the temperatures from the 
sensor and assigns its value to the internal represen-
tation of the electrode. In the second example, let us 
consider the same welding robot in a slightly different 
context. Over time, the electrode degrades and must 
be replaced, which the robot can do autonomously 
following the reception of a respective trigger. This 
trigger is received from the analysis tool which utilizes 
the digital twin of the robot. Unlike in the first exam-
ple, the degradation status of the electrode cannot be 
measured directly but must be inferred from a large 
number of related measurements that are recorded by 
the robot. These may include measurements such as 
temperature, humidity, the number of joints welded, 
the rate of use, current densities, and others which are 
linked to the degradation status of the electrode in a 
complex fashion. In stark contrast to the first example, 
establishing a model is significantly more challenging 

Mathematics, 
artificial 
intelligence & 
digital twins  

Digital Twins are 
currently one of 
the most exciting 
technological 
trends – 
Interdisciplinary, 
innovative, and with 
the capacity for 
enormous business 
potential. 
Dr. Enno Kätelhön
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as it requires a deep understanding of the physics 
of the welding process as well as empirical data.1

1 Please note that the two examples above can be 
solved with classical machine learning approaches. 
The use of a digital twin is merely a change in per-
spective. Rather than “only” designing a function 
that interprets the robot sensor data to trigger events, 
a digital copy of the robot is built and interpreted. 
While there is no difference between the benefits 
of the two approaches in these simplified examples, 
the concept of digital twins unfolds its full potential 
in more complex scenarios as we will shortly see.

Various types of models can be chosen for digital 
twins, which all come with different advantages and 
disadvantages. Most notably, differences can be found 
with regard to model accuracy, model transparency, 
and the complexity of developing the model.  In the 
following sections we compare and contrast three 
model types: a purely mathematical model, an artificial 
intelligence (AI) model, and a hybrid of the two.

Mathematical modeling

If the underlying processes are understood entirely in 
terms of their causality and numerical solutions can 
be found at a reasonable computational expense, 
then mathematical modeling is always the method of 
choice. The dependence of the quantities of interest 
on the available input data transmitted to the digital 
twin can be represented by a mathematical function 
or a corresponding computer algorithm. In the case of 
the second example of the welding robot, this would 
be a function that accepts the measured input quan-
tities such as temperature, humidity, and so on and 
produces a binary output indicating whether the elec-
trode should be replaced or not. 

A mathematical model is generally desirable as the 
results are reliable, usually computationally inexpen-
sive and – most importantly – the underlying rationale 
is understood and explainable. Vital insight into pro-
cesses is readily available and further knowledge can 
be gathered through the digital twin. Knowledge can 
later be fed back into research and development pro-
cesses and may set a basis for future management and 
strategy decisions. In addition, mathematical models 
usually only require minimal amounts of training data, 
if any. However, these advantages come at a price; the 
development of mathematical models is often signifi-
cantly more time-consuming and, depending on the 
understanding of the underlying processes, may not 

be feasible. Furthermore, a relatively large effort must 
be taken to evaluate whether a mathematical model 
can be found.

AI modeling

AI models are relatively general computational models 
and similar models can often be applied successfully to 
a very broad range of problems. More importantly, the 
underlying mathematics or physics of the problem do 
not need to be understood beforehand as the model 
dynamically adapts to the modeled data and adjusts 
its internal parameters, both accordingly and auto-
matically. By these means, an algorithm can be found 
that – similar to the mathematical approach – links 
input parameters to the unknown output parameters 
of interest. However, in stark contrast to the mathe-
matical approach, this algorithm features a significant 
number of parameters which are determined through 
training processes during which the parameters are 
adjusted to match large amounts of training data.2

2 We emphasize that AI models are technically a group 
of mathematical models. The term AI is often used 
imprecisely in the literature and media, and here, we 
attempt to use it along the lines of how it is most com-
monly interpreted: Mathematical models are based on 
previously established rules, while AI models analyze 
large amounts of data to extract rules to a specific 
problem.

In many, if not most, computational models being 
built for commercial applications today, AI plays a 
central role. While the reasons for this widespread 
use are manifold, there are several key advantages 
that are certainly of great importance to many users. 
AI models tend to be much cheaper to develop and 
operate than mathematical models as, within certain 
boundaries, they are more generally applicable with-
out in-depth domain knowledge, are versatile in their 
application, and dynamically adapt to changing cir-
cumstances. Furthermore, AI models tend to increase 
in accuracy with large amounts of data, which is 
presently cheap to store and gather, and often read-
ily available. However, most AI models tend to be 
“black boxes,” which means that the rationale on 
which decisions are made often remain in the dark, 
and “learned” results cannot be utilized beyond the 
predication made by the AI.3 This lack of transparency 
in how decisions are made obstructs the derivation of 
research and development feedback as well as input 
into management and strategic decisions. Depending 
on the application, and only in rare cases, this lack of 

transparency in decision making may lead to ethical 
issues that forbid the use of some types of AI models.

3 It should be noted that not all machine learning 
and AI algorithms are black box approaches. This 
may be thought of in terms of a classical decision 
tree, for instance, which is directly readable and 
interpretable. Most algorithms that are used today, 
however, are significantly more difficult to interpret 
as the model complexity is high, as is the number 
of internal model parameters that are adjusted in 
the model training. Algorithms, in which the ratio-
nale of how model results are achieved is difficult 
or currently impossible to extract, and include many 
deep learning, boosting, and ensemble approaches. 

Mathematics and AI hybrid modeling

The above two model types can be combined to cre-
ate a mathematics and AI hybrid. First, a mathemat-
ical model is developed to capture the essence of 
the underlying processes without the aspiration to 
describe the system exactly. The aim is rather to exploit 
the available domain knowledge to build a mathemat-
ical model that is as accurate as possible within the 
limitations imposed on the development in terms of 
time and financial constraints. In the second step, this 
mathematical model is extended to include AI. There 
are different ways to do so, one of which is to param-
eterize the mathematical AI model and have the AI 
predict the deviation between the result of the math-
ematical model and the exact result [4]. Other options 
include using the mathematical model in advanced 
feature engineering. Independent of the pursued 
approach, a hybrid model is developed that fulfills 
exactly the same tasks as the two above approaches, 
i.e., a mathematical and AI model; the determination 
or estimation of the quantities of interest on the basis 
of the input data that is transmitted from the physical 
entity to the digital twin.

Hybrid models combine most of the advantages that 
the purely mathematical models and AI models offer. 
Compared to a pure AI approach, they excel in trans-
parency as the mathematical model and its parame-
ters are accessible and can be rationalized, often in 
computational performance, and in the amount of 
data required to train the model. Maintenance efforts 
are comparable to a pure AI approach, if assumptions 
made in the mathematical model remain valid. Initial 
costs, however, are slightly elevated as time and labor 
must be allocated to the development of the mathe-
matical model. 

An illustration of the three different approaches can 
be found in Figure 3.

This section elaborates on the concept of digital twins 
from a methodical point of view. We have looked into 
various approaches to its implementation and different 
types of models have been compared and contrasted. 
The following extends this discussion to include the 
implementation of the digital twin concept in a typical 
business environment.  
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Figure 3: Comparison of a mathematical, an AI, and a hybrid modeling approach. Please note that the hybrid 
approach depicted is chosen as an example and there are numerous other options to build a hybrid model. 
Typical other approaches include using the mathematical model for advanced feature engineering.
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We have seen that the idea of digital twins is built 
on knowledge and data, which are both crucial to the 
success of any implementation of the concept. The 
deeper the understanding of underlying processes and 
the more data is available, the more accurate, useful, 
and eventually financially beneficial the implementa-
tion will be. While a number of factors influence the 
success of use cases, we firstly draw your attention 
toward the data that can be leveraged before we very 
briefly introduce a unique end-to-end implementation 
approach which has been developed by MHP.

An individual digital twin, i.e., a digital twin that 
exchanges information with a single physical entity to 
mirror its properties and state, can leverage a signifi-
cant amount of information. The development of the 
model can be based on domain knowledge, empirical 
data of prior similar use cases, and other data made 
available by scientific communities or obtained from 
proof-of-concept projects. In addition, and as a fun-
damental component of any implementation of a dig-
ital twin, the model will make use of sensor data that 
is collected and transmitted by the physical entity to 
be reflected. For this reason, at MHP, AI-driven digi-
tal twins are gaining increasing significance in areas 
such as IIOT transformation, where they are classified 
as one specific use case category.

In ensembles of digital twins, opportunities to lever-
age knowledge and data are even greater and espe-
cially include experiences made with prior instances of  
digital twins. If a statistically relevant number of 
physical entities alongside respective digital twins 
are already in use and further instances are to be 
deployed, previously gathered knowledge can be used 
to precondition the digital twins of the instances that 
are to be added. For instance, this can be achieved by 
finding a statistical mean of the previously deployed 
models, via a clustering of the prior instances and the 
determination of the cluster affiliation of the future 
instances, or more sophisticated approaches.

To tackle the challenging implementation processes, 
MHP developed the unique and well-established 
AIDev methodology which leverages the experience 
MHP has gathered in numerous AI and data science 
projects over many years. It is characterized by its  
lean and agile nature and was designed to minimize 
costs in the identification of use cases and their evalu-
ation while the process of algorithm deployment into 
a productive environment has been streamlined for 
maximum efficiency.

Building
successful 
digital twins

The vast possibilities 
made feasible by 
digital twins will 
only become 
reality when we  
recognize and fully 
comprehended 
these potentials,
so that conditions 
for regulated and 
secure data can be 
put in place. 
Dr. William Cobbah
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Bearing in mind the challenges laid out in the intro-
duction and the broad opportunities explored there-
after, there is no need to stress the potential of digi-
tal twins any further, although it is vital to note that 
these opportunities scale with the complexity of the 
tasks that need to be solved. 

Let us think beyond the rather practical examples 
discussed above and consider a slightly more for-
ward-looking example of complex interactions of a 
smart city. By leveraging the potential of ensembles 
of digital twins in a representation of all physical enti-
ties acting in an electrical grid, it will be possible to 
simulate and predict energy consumption to a stun-
ning degree of accuracy, as large numbers of digital 
twins can learn from each other and increase their 
performance. Analogously, traffic and environmental 
challenges can be solved by using the same ensem-
bles of digital twins and extensions thereof that may, 
at some point, evolve into a digital twin of aspects of 
a smart city. Similar opportunities can be identified 
in industry. For instance, it is foreseeable in manu-
facturing that integrated supply chains will use the 
idea of digital twin ensembles to produce models of 
suppliers and their interactions. At the required level 
of abstraction, the simulation of supply bottlenecks 
caused by individual specific entities will incorporate, 

for example, supplier risk data based on geo location, 
with representations of entities within the supply net-
work.

All of the above is only feasible providing means 
are found to generalize, modularize and standard-
ize digital twins and their ensembles. This enables 
large-scale virtual representations, which allow the 
simulation and analysis of future scenarios so that 
the physical world can be spared the adverse effects 
of growing complexity. This vision clearly goes far 
beyond the concept of ensembles of similar entities 
but is within the realms of possibility. The potential 
for abstract virtual representations for modeling pur-
poses are truly stunning.

Visions of the above generous opportunities being 
used will only become reality if the benefits of digital 
twins become more widely recognized and under-
stood, prompting frameworks for the regulated and 
safe availability of data.

Opportunities
& the way 
forward
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