
MHPWHITE PAPER

ALGORITHMIC 
PRODUCTION
A Framework for Planning, Design and Implementation of 
Manufacturing Control System Architectures 



Algorithmic Production | October 2020

This white paper proposes a framework for choosing the most appropriate 
solution architecture to support modern manufacturing facilities as part 
of an End-2-End-[I]IoT-Transformation. Modern manufacturing is character-
ized by processes that allow fast time-to-market, sustainability and highly 
customizable, multiple product variants. Growing requirements to produc-
tion calls for new architecture solutions. Firstly, we will discuss the differ-
ent approaches for implementing an architecture of this nature. Secondly, 
the building blocks encompassed by this architecture. And finally, the busi-
ness scenarios that will serve this architecture. 

Every architecture design suggested by the framework is linked to the new 
unique core figure, called “algorithmic production”. In algorithmic produc-
tion, schedules of entities in a distributed shop floor are repeatedly opti-
mized. This is based on the predicted availability of machines and opera-
tions to be executed according to the work plan as well as on unforeseeable 
events during execution. To optimize the production plan, the framework 
selects from a repository the method that best suits the business scenario 
and objective function.
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1.1. IoT Transformation —  
An End-to-End-Approach 

Industrial Internet of Things (IIoT) and digital transfor-
mation are multilayered and complex concepts. On 
the one hand, fields of action and use cases for com-
panies must be specifically defined and, if possible, via 
small projects or product concepts. On the other hand, 
embedding all aspects into an end-to-end approach is 
extremely important.

The end-to-end approach and the integration of the 
individual subject areas are essential success factors 
for the [I]IoT transformation. In addition, it is necessary 
to combine this approach with a consistent strategy, 
roadmap, conception, as well as the implementation 
and use of technological solutions.

The use of IIoT and its embedding in the overall archi-
tecture are elementary prerequisites for innovative 
production concepts - as in this example, algorith-
mic production. This requires smooth cooperation 
between all the disciplines shown in Figure 1. Only 
with the right roadmap and a focus on the relevant 
stations can solutions be implemented profitably - and 
above all sustainably.

   Improved overall system stability with focus on toler-
ance to faults and system changes.

   Adaptive capabilities for fast and immediate system 
adjustments as well as for realizing scalability.

These requirements are fundamental for handling new 
and highly dynamic environments. More self-aware 
and intelligent resources enable greater autonomy 
and self-control, which in turn, pushes existing shop 
floor systems toward innovation. Comprehensive data 
collection, in combination with agent technology and 
cloud computing, has led to the development of pow-
erful technologies that could fundamentally change 
the way we think about manufacturing today.

The term “algorithmic production” encompasses any 
form of manufacturing control system that enables 
self-control and autonomy through calculating, opti-
mizing and coordinating schedules of production enti-
ties from ubiquitous shop floor processes. Such enti-
ties include parts, machines, operations and job orders 
— or even any type of unforeseen process occurrences 
or disturbances.

For the algorithmic production, different architecture 
scenarios can be applied depending on the business 
use case. Each architecture scenario has its own func-
tional and technical requirements, although they must 
all serve ISA95 Level 3 to Level 1 functionality in gen-
eral. 

1.2. Algorithmic Production 
as the Solution for Handling 
Increasing Industrial 
Challenges

In order to remain competitive, industrial companies 
must be able to handle an increasing number of prod-
uct variants and ever shorter product life cycles. At 
the same time, even refining consumer requirements 
drives the demand toward products with a fast time-
to-market. The result are products that are sustain-
able, have high quality and are highly customized, 
at a low price. In addition, the rapid development of 
cyber-physical systems and IIoT also promotes auton-
omy in dynamic shop floor processes. This concept 
is part of the so-called fourth industrial revolution or 
“Industry 4.0” [12, 15, 26].

To cope with highly competitive global markets, mod-
ern production systems are based on certain require-
ments and characteristics that go beyond traditional 
performance indicators:

   Increasing autonomy in decision-making at system 
and component level.

   Using fully self-aware components, e.g. resources 
and materials. 

   Development of cyber-physical-oriented designs to 
individualize equipment and products.

A wide range of different designs for manufacturing 
control systems architecture have been discussed, 
including “Reconfigurable Mechatronic System” (RMS) 
[8, 12, 15, 18], “Multi Agent System” (MAS) [19, 29] 
or even “Holonic Manufacturing System” (HMS) [1, 6, 
23]. This framework of algorithmic production con-
siders different scenarios according to their particular 
needs in terms of implementing the algorithmic pro-
duction principle. Here, we consider the architecture 
design rather than specific implementation structures 
like HMS. Any of the designs can be applied for imple-
mentation of algorithmic production processes.

The paper is organized as follows: In Chapter 2, the 
term “algorithmic production” will be amplified as a 
core principle found in any architecture design derived 
from the proposed framework. The characteristics of 
algorithmic production will be explained via an archi-
tecture design that encompasses several building 
blocks, each providing a specific functionality. Chap-
ter 3 suggests various reliable architecture scenarios 
for implementing algorithmic production — from 
technical as well as functional perspectives. Moreover, 
Chapter 3 summarizes the related business cases for 
algorithmic production scenarios and explains the indi-
cators to determine the most appropriate architecture 
scenario. In Chapter 4, an OEM implementation of the 
central architecture scenario, including genetic algo-
rithm-based (GA-based) scheduling, will be presented. 
This chapter includes information about challenges 
and experiences that has been gained during imple-
mentation.

Introduction
Chapter 1
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Figure 1: [I]IoT Transformation — MHP End2End Approach to Enable Digitalization
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2.1. Overall Principles of 
Algorithmic Production

In algorithmic production, several parallel running 
manufacturing schedules of production orders are 
coordinated and optimized. These actions are based 
on one or more predefined objective functions. Since 
unexpected deviations from planned schedules may 
occur at any time due to disturbances, these must also 
be resolved during the optimization. In algorithmic 
production, each possible sequence of activities for 
the execution of a production order is repeatedly cal-
culated in advance for a short period of time and max-
imized against predefined objective functions. Avail-
ability, lead time and makespan are objective functions 
for optimization. At the same time, all material-related 
process sequences of the job conditions must be 
adhered to. Once implemented, algorithmic produc-
tion guarantees maximum flexibility and reliability of 
the processes on the shop floor. Since the algorithmic 
production controls autonomous instances on differ-
ent levels through constant schedule optimization, it 
can also react dynamically to changes. This also applies 
at machine, route and product level.

   Certain resources become unavailable and/or addi-
tional resources are introduced.

   Unexpected events occur in the system, such as 
machine failures, operator absence, rush orders or 
unavailability of (raw) materials.

   Scheduled tasks may take more or less time than 
expected.

In such dynamic environments, an optimized schedule 
that has been produced in advance can quickly become 
outdated. Dynamic rescheduling is required as fast as 
possible to avoid the risk of disruption to operational 
processes [3, 4, 5, 14]. This fact makes scheduling a 
crucial part of all manufacturing control systems. Many 
scheduling methods [4, 7, 11, 13, 14, 33, 36] have 
been evaluated based on heuristics, linear program-
ming, constraint satisfaction techniques, neighborhood 
search techniques (e.g. simulated annealing or taboo 
search) and genetic algorithms [2, 11, 13]. However, it 
is necessary to define which method is most appropri-
ate for whatever manufacturing control architecture is 
applied [26, 27].

Scheduling in manufacturing is understood as the allo-
cation of jobs to resources over a time related to an 
objective function. Jobs themselves always belong to 
order that are executed within a specific time period. 
The execution of the orders occurs either in parallel or 
in sequence to other orders that make manufactur-
ing scheduling even more complex [2, 5, 11, 14, 32, 
33]. Since operative manufacturing requires reschedul-
ing within a short time, schedules must be calculated 
swiftly to allow for continuous process flows. Accom-
modated scheduling mechanisms and the chosen 
objective function must balance to achieve maximal 
efficiency. The framework offers a different combina-
tion of schedule mechanism and objective functions 
for each of the architecture scenarios.

In industrial practice, things seldom work as expected; 
different events always occur. For example: 

   New tasks arrive continuously in the system and 
scheduled ones get canceled.

2.2. Building Blocks of 
Algorithmic Production 
Architecture Design 

The architecture design of algorithmic production 
encompasses four core building blocks that interact 
with each other. These building blocks sense data 
from the shop floor and transform it into meaningful 
events applicable for schedule calculation. The build-
ing blocks also provide an initial schedule in advance 
and optimize it in line with various criteria. Together 
they establish a closed-loop process with deep learn-
ing facilities to improve behavior over time. 

Based on the lurking shop floor, data schedules are 
built for a certain time period t2 in advance, and in 
turn prepared for optimization. This optimization will 
be repeated increasingly after each time t1, until all 
shop floor jobs are accomplished. The time parame-
ter t1 is significantly smaller compared to time t2 in 
order to catch as many events as possible. Both time 
parameters are unknown at the beginning but will be 

Chapter 2

Figure 2: MES architecture extension by algorithmic production features

Principles and 
Building Blocks 
of Algorithmic 
Production
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learned during runtime. This working principle has 
two consequences: Firstly, we may not be interested in 
specifying an optimal schedule during the prediction 
step, as the optimization will be executed afterwards. 
Secondly, the optimization itself has not the goal to 
provide a global optimum, but local ones only.

The principal architectural design of a conventional 
manufacturing execution system (MES) extended by 
the algorithmic production feature is described in  
Figure 2.

The following building blocks are provided 
within the architectural design:

     Shop Floor Connector

Senses all schedule-related shop floor data that has 
been changed for the current time period, e.g. from 
Automated Guided Vehicles (AGVs), machines and 
operations together with start and finish times. All 
gathered data will be feed into the current schedule 
and, in turn, considered during schedule prediction for 
the next cycle.

     Schedule Predictor

Calculates several schedule variants, each of which is 
eligible for processing within time t2. It is necessary 
for these schedules to adhere to the routing rules of 
their related jobs. Although the principle of earliest 
completion time will be applied to schedule design, 
it is not the intention of the “Schedule Predictor” to 
provide an optimal schedule but only to deliver several 
schedule variants.

As visualized in Figure 2, the “Schedule Predictor” 
accommodates five submodules to calculate a batch of 
single schedules. The schedule calculation starts with 
the “Joborder Sequencer” to build various sequences 
of job operations. The idea here is to provide different 
schedule variations that are gathered and finally con-
solidated by the “Schedule Collector”. The creation of 

a single schedule includes the following steps: First, 
during machine allocation, a job operation to be exe-
cuted is assigned to a machine whose availability is 
close to the start date of the operation. The “Opera-
tion Positioner” then determines the start and comple-
tion date of the operation based on the machine cycle 
time and the transport times to and from this machine. 
Finally, the “AGV Allocator” manages and controls 
the movements of the AGVs and their availability in 
order to optimize costs and maintenance times.

       Schedule Optimizer

Provides a single optimal schedule by optimizing the 
schedule variations from the “Schedule Predictor” 
for the time period t2. The optimization step itself is 
restarted after time t1, until all job orders have been 
processed. Different tools for optimization are dis-
cussed in literature, including GA-based scheduling, 
Markov search trees, swarm models or conventional 
optimizations such as gradient descent. Any of the 
algorithm designs mentioned before may achieve sat-
isfying optimization results. Depending on the busi-
ness scenario, it must be determined which method is 
best suited regarding to the architectural design.

        Parameter Learner

Applies learning mechanisms. We have already men-
tioned two parameters as relevant for algorithmic pro-
duction. Firstly, by the time t2 each schedule will be 
calculated in advance. Secondly, by the time t1 the 
optimization step will be repeated. Both pre-defined 
parameters are made more precise over time by using 
learning mechanisms. The task of the “Parameter 
Learner” is to determine which value the parameters 
t1 and t2 should have in order to achieve the maxi-
mum optimization result. 

10 11
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The framework defines different manufacturing con-
trol architecture scenarios for the implementation of 
the algorithmic production with the corresponding 
use cases. 

In general, manufacturing control architectures can 
be classified into one of four topological classes [31]. 
Architectures, which regulate the entire task spectrum 
for machines and transport routes via a central con-
trol system, form class 0. In class I the high processing 
effort of class 0 architectures is reduced by splitting 
them into different controlling (sub-)architectures. 
However, the hierarchical design of the overall archi-
tecture is retained when sub-architectures are used. In 
class II, the architectures are combined, which enable 
hybrid manufacturing control by combining hierarchi-
cal and partially heterarchical control. Finally, Class III 
architectures of manufacturing control systems offer 
completely decentralized control, where processing 
is performed by several independent and autono-
mous instances. Since there is no significant deviation 
between classes 0 and I with respect to the underlying 
process and system structure, they are considered as 
one single class in the framework of algorithmic pro-
duction.

For the algorithmic production framework, the follow-
ing architecture scenarios will be set out in more detail 
and applied to operational shop floor processing:

   Centralized manufacturing architecture — Orders, 
based on production planning, drive manufacturing: 
The overall central schedule accommodates all jobs, 
operations and resources. Disturbances in the form of 
unavailable resources will be resolved during schedule 
optimization. Thus, all critical paths throughout the 
shop floor must be redundant to avoid interruptions.

   Federated manufacturing architecture — Mixed 
approach depending on disturbances. There is a 
general central schedule only for the “Happy Path”. 
In the case of disturbances, the affected jobs, oper-
ations and resources will negotiate new local sched-
ules. Once disturbances are resolved, a new overall 
schedule is calculated, according to which produc-
tion continues. This approach provides a high reli-
ability of production in terms of output quantity.

  Decentralized manufacturing architecture — 
Machines lead and the shop floor drives manufac-
turing: Local schedules apply only at agent level. 
Communication between agents steers the overall 
manufacturing process. Agents work on all levels. 
Jobs, operations and resources all follow their own 
individual agenda and objectives. Negotiation bal-
ances individual interests and enables communica-
tion between agents.

Framework  
for Algorithmic 
Production 

Chapter 3

Centralized 
manufacturing
architecture 

Federated 
manufacturing
architecture  

Decentralized 
manufacturing
architecture 

Topology class Class 0–I Class II Class III

Scheduling 
mechanism

Single overall schedule 
that applies: Approach 
by localization (AL) 
[13], disjunctive graph 
model (DSG) [3], 
earliest finish time 
(EFT) [4], HEFT [4, 30]

Coordination of 
distributed single 
schedules [16, 17]

Coordination of 
autonomous agents  
[19, 29]

Objective function Makespan, machine 
utilization, goods 
produced 

Makespan, machine 
utilization, tardiness, 
nervousness

Makespan, machine 
utilization, tardiness, 
nervousness

Optimization 
function

Particle swarm 
optimization (PSO), 
genetic algorithm 
(GA), automated bees 
colony (ABC), ant 
colony (ANC) 
[18, 33)

GA, multi-issue 
negotiation [9, 10]

Multi-issue 
negotiation
Monte Carlo tree 
search (MCTS) 
[20, 25]

Architecture 
principle

Central control entity 
for all entities involved

Central control entity, 
distributed shop floor 
entities

Distributed, self-
aware, autonomous 
entities

Technology stack Conventional MES 
extended to shop 
floor gateway to steer 
level 2–0 resources

Holon manufacturing 
systems, multi-agent 
systems

IoT, multi-agent 
system, cloud 
manufacturing, 
swarm intelligence

Business principle Order centric Event centric Machine/resource 
centric

Table 1: Manufacturing architecture scenarios for algorithmic production
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3.1. Centralized 
Manufacturing Architecture

One architecture scenario for an algorithmic produc-
tion framework is the centralized approach. There is 
one central instance in the centralized manufacturing 
architecture. This can be any system or entity that is 
responsible for one overall schedule for production. 
Here, we assume that production is driven by orders 
from one central production planning.

All order-related production processes are defined in 
the overall central schedule. It describes which tasks or 
operations need to be accomplished, as well as their 
allocation to physical resources. The schedule consists 
of several entities that are hierarchically structured 
into jobs, operations and resources. Furthermore, the 
schedule defines the sequence of all job-related pro-
cessing and transportation tasks.

During processing, the central schedule is regularly 
updated and optimized. For the purpose of optimi-
zation, different objective functions can be applied 
to different instances, e.g. transport costs or speeds 
of AGVs as well as availability or processing times of 
machines. Unexpected disturbances in the form of 
unavailable resources are eliminated during optimiza-
tion. Therefore, all critical paths should be redundant 
throughout the shop floor to avoid interruptions.

One possibility for implementing an optimization com-
ponent into the schedule is by applying a genetic algo-
rithm (GA). A GA is a search heuristic inspired by the 
theory of natural evolution. This algorithm reflects the 
process of natural selection in which the fittest individ-
uals are selected for reproduction. The process of nat-
ural selection begins with the selection of the stron-
gest individuals from a starting population [2, 13, 32]. 
Through crossover and mutation, recombination and 
optimization are realized. If this principle is applied to 
central scheduling, a global optimum can be achieved.
In the context of algorithmic production, achieving 
a global optimum is not necessary even for a central 
production architecture. The principle of algorithmic 
production is based on the realization of short-sequen-
tial partial optimizations. According to the architecture 
design from chapter 2, the “Schedule Predictor” starts 
to determine all possible schedule variants for a firmly 
defined future time horizon (e.g. 10 minutes) based 
on the available information from “Shop Floor Con-
nector”. The calculated schedule variants can be used 
as an initial population for the genetic algorithm. The 
“Schedule Optimizer” continues to process the sched-
ules until an optimum has been determined. This pro-

cess is restarted after a fixed time interval has elapsed, 
so that successive partial-optimal schedules are gener-
ated within a short time.

To enable the central scheduling approach, a few 
requirements must be fulfilled. First of all, the ability to 
perform actions when scheduling approaches is neces-
sary. Rescheduling is required in the event of machine 
breakdowns, rush orders, cancellations due to quality 
issues, etc. Moreover, the ability to apply optimiza-
tion techniques is relevant for achieving a continuous 
improvement in overall system behavior.

3.2. Federated Manufacturing 
Architecture

The intention of the federated architecture is to com-
bine centralized and decentralized control approaches 
in order to increase agility, flexibility and stability of 
the manufacturing control system. Such systems are as 
centralized as possible and as decentralized as neces-
sary, which allows them to use a centralized approach 
when the objective is optimization, and a decentral-
ized approach in response to unexpected events. 

This architectural design was first handled in connec-
tion with so-called holons. According to Koestler’s 
definition, a holon is a part of a system that has its 
own identity and a private schedule. Holons can be 
physical resources and logical instances that include 
both informational and physical parts [1, 6].

In federated architectures, various self-regulating 
holons are combined into a hierarchically struc-
tured overall system based on their private schedules 
[16,17,18]. In the following, central types of holons 
are introduced which, together with the formation of 
a hierarchy, can take over the execution of production 
orders:

   Task Holon: Is responsible for managing real-time 
execution of production orders on the shop floor. 

   Operational Holon: Represents the system re- 
sources, e.g. machines and robots.  An operational 
holon is responsible for governing its own agenda as 
well as managing the physical connection with the 
real resource. 

   Supervisor Holon: Provides coordination and opti-
mization services to the holons under its supervi-
sion, and thus introduces hierarchy in an otherwise 
decentralized system.

Holons will always constitute a hierarchy. However, any 
single holon can always leave that hierarchy in order 
to participate a temporarily built community of other 
holons, which mostly happen as result of a distur-
bance. The participation of a holon depends on how 
well the holon with its private schedule can optimize 
the local schedule from the hierarchy formed with the 
other holons. Only if the holon meets the defined opti-
mization criteria, it will be integrated.

The integration takes place via the algorithmic pro-
duction: On the one hand, the “Schedule Predictor” 
calculates the possible integration variants of the pri-
vate holon schedule into the corresponding hierarchy. 
On the other hand, “Schedule Optimizer” determines 
whether the predefined optimization criteria have 
been met or not.

3.3. Decentralized 
Manufacturing Architecture

Another scenario for the development of algorithmic 
manufacturing control systems is the approach of 
decentralized architecture. In this scenario, shop floor 
objects (e.g. machines, products or workpiece carriers) 
lead and control production. These interacting and 
intelligent resources are called agents. Agents can be 
characterized as self-aware, autonomous and at least 
partially independent. Together they form so-called 
multi-agent systems, which aim to solve problems that 
would be too complex or even impossible for a single 
agent or a monolithic system [21, 22].

In contrast to the centralized and federated approach, 
the decentralized approach is based solely on the pri-
vate schedules of the agents. A characteristic of the 
agents is their limited view of joined production occur-
rences. For this reason, continuous communication 
between the agents takes place in real time in order 
to get a global view and be able to solve higher-level 
problems. The global view makes it possible to steer 
the overall manufacturing processes. 

Agents run jobs, operations and resources at all lev-
els. Each agent follows a predefined individual work 
agenda (private schedule), which is linked to specific 
objectives and requires activities to be performed 
with other agents. The activities of all agents must be 
coordinated among themselves so that manufactur-
ing control can always be carried out effectively and 
efficiently. Crucial for this is the execution of negoti-
ations between the agents, which optimizes the dis-
tribution of tasks and the achievement of objectives 

by the agents. Negotiation balances individual inter-
ests and enables continuous communication. Agents 
communicate with each other about their objectives 
and the requested activities. A credit system regulates 
the negotiation process. Agents offer jobs to each 
other that can be accepted, declined or also canceled. 
Agents must immediately declare their decision to pre-
vent several agents from performing the same task.

In the algorithmic production architecture, all agent 
decisions are collected by the “Shop Floor Connector” 
and transmitted to the “Schedule Predictor”, which 
then bundles different variants of decision sequences 
into schedules. The “Schedule Optimizer” will then 
select the most suitable schedule and announce it to 
the involved agents. In addition, every negotiation will 
be dropped that has not been finalized before the 
schedule prediction process has been restarted. For 
dropped negotiation negative credits will be given to 
the agents involved.
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Industry Reference is based on a central manufacturing 
architecture and has the primary purpose of explaining 
how algorithmic production can be implemented in 
operational practice. It was implemented as part of an 
automotive project to manufacture electric engines in 
a new production plant.

To introduce the reference, it is important to under-
stand that this automotive project represents several 
innovative topics: 

   The OEM strives for E-Mobility and has developed  
an electric engine for a fully electric vehicle. The  
product development process itself was very 
dynamic and volatile during the project. For example,  

   The modular production layout and the redundant 
availability of machines have increased the flexibil-
ity in process execution. A control algorithm guided 
the AGVs through the modular production plant. 
This made it possible to shorten waiting times by 
reacting dynamically to unexpected events. Machine 
failures no longer led to an interruption of the pro-
duction chain, as alternative machines with identical 
functions were offered.

At the same time, these innovative topics simultane-
ously entailed different customer requirements for the 
production system:

   An intelligent planning system was necessary that 
could react to changes in the production schedule as 
needed to maximize plant capacity utilization.

   Another important requirement was the flexible 
execution of operations in the routing. Due to the 
availability of several resources with the same or sim-
ilar functions, the execution sequence of operations 
and resources should be dynamic. For this reason, 
operations in the work plan were broken down to 
the smallest sub-steps in order to then assign them 
to resources.

   Furthermore, there was the requirement to inte-
grate logistical processes into the manufacturing 
control system. In this integrative system, it was 
crucial regarding productivity that the right material 
was available at the right time for the right resource 
and the right product variant. As it is the case in 
most production plants, the objectives of minimum 
throughput time and maximum output quantity 
were also set for this production system.

A completely new production architecture was required 
to fulfill the requirements of modular and flexible pro-
duction described above. The centralized architecture 
approach was chosen to achieve the customer’s objec-
tives. With the central scheduling approach, a general 
schedule was created in an integrative manufacturing 
control system, which includes all orders, operations 
and resources. This schedule determined the respec-
tive sequence of processing activities of human and 
machine as well as the transport routs of the AGVs. 
On the one hand, the AGVs were used to transport 
the electric engines throughout the shop floor and 
between the machines. On the other hand, compo-
nents from a supermarket were provided on the AGVs 
for assembly. Due to the multiple availability of sys-
tems, there were several manufacturing paths existing 
in the production plant. A regular update of the sched-

changes to the product affected the implementa-
tion and realization of the required manufacturing 
processes as well as the technical parameters and 
configurations in the manufacturing control system.

   The new product was manufactured according to 
a completely new concept in modular design. The 
main goal of the OEM was to build a dynamic and 
flexible production facility that can react autono-
mously to changing events. For the first time in the 
industry, AGVs were used not only for logistical  
purposes, but also to map the value chain on the 
shop floor. AGVs therefore become a crucial part of 
the production system.

ule made it possible to reschedule and optimize the 
production routes in case of disturbances or delays.

During implementation of this centralized production 
system, the project participants faced several technical 
and organizational challenges. The main challenges 
experienced are outlined below:

   Integration and complexity: A centralized 
approach always leads to the need to integrate all 
systems and technologies at all ISA levels. Seamless 
integration of all technical and logistical instances 
combined with a modular production concept 
increased the complexity of the overall system. This 
became particularly visible when changes were 
made in the system. 

   Performance: Short latency of machine cycles  
creates a very tough time schedule that all processes 
must adhere to. The cycle time of each machine  
had to include all activities required for data acquisi-
tion and calculation from the surrounding interface 
systems. 

   Overall system availability: Due to the pervasive 
nature of system availability, each individual system 
was critical to success. The systems in the architec-
tural landscape were connected and dependent on 
each other.

A last challenge to be mentioned is the human influ-
ence on the new disruptive concept of modular and 
algorithmic production. First of all, the manufacturing 
processes for an electric engine differs significantly 
from that of a combustion engine. In addition, the 
transition from human control to automation and dig-
italization was completely new for employees. Intelli-
gent instances that controlled the shop floor processes 
in a modular production led to a loss of human con-
trol and transparency. In addition, the intervention of 
an operator in the automated process could lead to a 
reduction in efficiency. Examples are increased wait-
ing times for machines and longer transport times for 
AGVs.

The project represented a learning journey for all proj-
ect participants, both in terms of process and system 
development, and due to the technical and organi-
zational challenges involved in the introduction and 
operational execution of the centralized production 
system. For example, to success¬fully set up and run a 
human-machine environment, employees’ awareness 
of how to operate a fully automated system must be 
achieved from the very beginning.

Industry 
Reference for 
Implementing 
Algorithmic 
Production in 
Electric Engine 
Manufacturing  

Chapter 4
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In this white paper, we introduced the principle of algorithmic production 
as a recommended solution to cope with the demands of modern manufac-
turing facilities regarding flexibility, robustness and availability to enable 
the production of highly customized goods. Algorithmic production relies 
on repeated schedule calculation within narrow time cycles for a fixed time 
in advance. This process gathers all emergent events that may impact the 
schedule. The schedule chosen for processing will be the one that best meets 
the predefined optimization criteria. Optimization is normally performed 
in line with various parameters such as makespan, lead time and machine 
load balance. 

To implement algorithmic production, three different architecture scenar-
ios (centralized, federated and decentralized) have been proposed. Each 
one is discussed from the perspective of its relevant building blocks. Due to 
a lack of experimental data, the selection of the architecture scenario must 
be based on business purpose only. It is assumed that the centralized sce-
nario may be most appropriate for order-driven manufacturing processes. 
The centralized scenario differs from a decentralized scenario in which the 
machines control shop floor processes autonomously. The federated archi-
tecture scenario can be applied for a mixture of both business purposes. 
Finally, the industrial implementation of the central architecture approach 
was presented using a reference example for electric motor production. 
Technical and organizational challenges were also discussed.

In conclusion, it is clear that the [I]IoT-transformation is a highly complex 
topic. At the same time, it offers enormous potential for production effi-
ciency if an integrative approach is taken. As the development cycles of 
software applications and innovative technologies will continue to acceler-
ate, corporate management must also be viewed from a new perspective. 
An understanding of the technical changes and the changing tasks and 
roles of employees in the industry is becoming increasingly important.
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