CO₂ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk
CO₂ als Wettbewerbsfaktor in der automobilen Wertschöpfungskette – Auswirkungen und Möglichkeiten zur Nutzung der Gesetzgebung zur Minderung des Ausstoßes von Treibhausgasen.

MHP – A Porsche Company in Kooperation mit der Hochschule Pforzheim

Eva Maria Streppel
MHP – A Porsche Company

Prof. Dr.-Ing. Henning Hinderer
Hochschule Pforzheim

im Februar 2016

Alle Rechte vorbehalten!

Vervielfältigung, Mikroverfilmung, die Einspeicherung und Verarbeitung in elektronischen Medien sind ohne Zustimmung der Herausgeber nicht gestattet.

ISBN 978-3-00-052828-6
Inhaltsverzeichnis

Inhaltsverzeichnis ... III
Abbildungsverzeichnis ... V
Tabellenverzeichnis .. VI
Abkürzungsverzeichnis ... VII
Management Summary ... X

1 **CO₂ im automobilen Wertschöpfungsnetzwerk** ... 1
 1.1 Hintergrund und Zielsetzung .. 1
 1.2 Aufbau und Methodik .. 3
 1.3 Betrachtungsweise des CO₂-Ausstoßes ... 3

2 **Umweltwirkungen der Lieferkette** ... 5
 2.1 Definition Umweltwirkung ... 6
 2.2 Treibhausgase im Fokus der Betrachtung .. 7
 2.3 CO₂ und CO₂-Messgrößen ... 8
 2.4 CO₂ beim Lieferanten .. 9

3 **Regulierende Normen und Standards zum CO₂-Ausstoß** 11
 3.1 Verfügbare Normen und Standards ... 14
 3.2 Weitere Entwicklungen .. 26

4 **Der CO₂-Ausstoß als Steuergröße** ... 30
 4.1 Einsatzmöglichkeiten als Steuergröße ... 30
 4.2 Ansätze zur Erfassung und Bewertung der Umweltwirkungen 31
 4.3 Einschätzung der bestehenden Methoden .. 33

5 **Herleitung einer Basisformel zur Berechnung von Emissionen in der Lieferkette** ... 36
 5.1 Grundlegende Ansätze zur Berechnung .. 36
 5.2 Zusammenführung unterschiedlicher Berechnungsansätze 42
 5.3 Ableitung einer Basisformel ... 44
 5.4 Faktoren mit Einfluss auf die Berechnung .. 47

6 **Berechnungstools und Datenbanken** .. 49
 6.1 Ausgewählte Berechnungstools und Software .. 49
 6.2 Datenbanken .. 54
7 CO₂ als Wettbewerbsfaktor .. 59

7.1 Berechnungsvorgehen in drei Schritten .. 61
7.2 Einsatz bei Lieferantenauswahl ... 66
7.3 Einsatz in Einkauf und Lieferantenentwicklung ... 66
7.4 Einsatz in der Lieferantenbeurteilung ... 68
7.5 Einsatz zur Steuerung der Supply Chain ... 69

8 Fazit und Ausblick ... 72

Quellenverzeichnis ... 74
Abbildungsverzeichnis

Abbildung 1: Wert-, Material- und Informationsfluss sowie CO₂ ... 4
Abbildung 2: Umweltwirkungen in der Lieferkette ... 5
Abbildung 3: Einflussbereiche der Standards und Normen zur Erfassung von Umweltwirkungen ... 25
Abbildung 4: Möglicher Einsatz von CO₂ als Steuergröße in der Wertschöpfungskette 30
Abbildung 5: Ansätze zur Bestimmung von Verbrauchsdaten ... 43
Abbildung 6: Berechnungsstufen, Bezugsgrößen und wesentliche Einflussfaktoren............. 47
Abbildung 7: Übersicht ausgewählter Berechnungstools ... 49
Abbildung 8: Aufbau des Berechnungskonzeptes ... 61
Abbildung 9: Routenwert ... 62
Abbildung 10: Durchschnittswertberechnung .. 68
Tabellenverzeichnis

Tabelle 1: Standards und Normen zur Erfassung von Umweltwirkungen 16
Tabelle 2: Gegenüberstellung der Normen und Standards .. 26
Tabelle 3: Hauptkenngrößen .. 37
Tabelle 4: Übersicht unterschiedlicher Ansätze zur Erhebung von CO₂-Emissionen 38
Tabelle 5: Gegenüberstellung von Software unterschiedlicher Anbieter und

verschiedenen Verkehrsträgern .. 54
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aKV</td>
<td>Absoluter Kraftstoffverbrauch</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit</td>
</tr>
<tr>
<td>B-to-B</td>
<td>Business-to-Business</td>
</tr>
<tr>
<td>B-to-C</td>
<td>Business-to-Consumer</td>
</tr>
<tr>
<td>BVL</td>
<td>Bundesvereinigung Logistik e.V.</td>
</tr>
<tr>
<td>CEN</td>
<td>Comité Européen de Normalisation</td>
</tr>
<tr>
<td>CF</td>
<td>Carbon Footprint</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methan</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid / Kohlendioxid</td>
</tr>
<tr>
<td>CO₂ₑ</td>
<td>Kohlenstoffdioxid-Äquivalent(e)</td>
</tr>
<tr>
<td>D</td>
<td>Transportdistanz</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung e.V., auch Abkürzung für die Normen derselben Organisation</td>
</tr>
<tr>
<td>dKV</td>
<td>Durchschnittlicher Kraftstoffverbrauch</td>
</tr>
<tr>
<td>DSLV</td>
<td>Deutscher Speditions- und Logistikverband e.V.</td>
</tr>
<tr>
<td>EM</td>
<td>Emission</td>
</tr>
<tr>
<td>EMAS</td>
<td>Eco-Management and Audit Scheme</td>
</tr>
<tr>
<td>EN</td>
<td>Europäische Norm</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>EV</td>
<td>Energieverbrauch</td>
</tr>
<tr>
<td>EVspez</td>
<td>Spezifischer Energieverbrauch</td>
</tr>
<tr>
<td>F</td>
<td>Umrechnungsfaktoren</td>
</tr>
<tr>
<td>FCKW</td>
<td>Fluor-Chlor-Kohlenwasserstoffe</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse-Gas</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
</tbody>
</table>
CO₂ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

IPCC: Intergovernmental Panel on Climate Change
ISO: International Organization for Standardization, auch Abkürzung für die Normen derselben Organisation
Kap: Kapitel
KBA: Kraftfahrtbundesamt
kg: Kilogramm
km: Kilometer
KVP: Kontinuierlicher Verbesserungsprozess
kWh: Kilowattstunde
LCA: Life Cycle Assessment
LCC: Life Cycle Costing
LCR: Life Cycle Review
MIPS: Materialinput pro Serviceeinheit
N₂O: Distickstoffoxid
NO₂: Stickstoffdioxid
O₃: Ozon
OEM: Original Equipment Manufacturer
PCF: Product Carbon Footprint
Pkm: Personenkilometer
SCM: Supply Chain Management
SF₆: Schwefelhexafluorid
SO₂: Schwefeldioxid
TEHG: Treibhausgas-Emissionshandelsgesetz
TEU: twenty foot equivalent unit
THG: Treibhausgas
tkm: Tonnenkilometer
TTW: Tank-to-Wheel
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN</td>
<td>United Nations (Vereinte Nationen)</td>
</tr>
<tr>
<td>UNCED</td>
<td>United Nations Conference on Environment and Development</td>
</tr>
<tr>
<td>VDI</td>
<td>Verein Deutscher Ingenieure</td>
</tr>
<tr>
<td>VOS</td>
<td>Virtual Operating System</td>
</tr>
<tr>
<td>WTW</td>
<td>Well-to-Wheel</td>
</tr>
</tbody>
</table>
Management Summary

Es bieten sich unterschiedliche Möglichkeiten über die Wertschöpfungskette hinweg, CO₂-Emissionen als Steuergröße einzusetzen. Ein Vorschlag, wie sich diese in der Anwendung gestalten ließe, wird in diesem Beitrag ausgeführt. Ein adäquater Ansatz

Der wichtigste und wahrscheinlich zugleich der schwierigste Schritt wird jedoch sein, alle Beteiligten der Wertschöpfung hinsichtlich der Notwendigkeit zu überzeugen und zu einem entsprechenden Umdenken zu bewegen. Konzeptseitig sind zumindest viele Grundlagen gelegt und einer Umsetzung in fortschrittlichen Unternehmen steht im Prinzip nichts entgegen. So wären diese im Falle eines raschen Wandels für die Zukunft gut gerüstet.
1 CO₂ im automobilen Wertschöpfungsnetzwerk

1.1 Hintergrund und Zielsetzung

Zahlreiche Faktoren weisen darauf hin, dass sich die industrielle Produktion, insbesondere hinsichtlich der Mobilität von Personen und Gütern, zumindest mittelfristig, signifikant ändern wird. Ein wesentlicher Treiber ist dabei die Absicht verschiedener Akteure, Mobilität in Zukunft aufgrund von Ressourcenschonung und Klimawandel emissionsärmer zu gestalten.1 Dabei steht insbesondere die Reduzierung des CO₂-Ausstoßes im Vordergrund. Stand heute sind hierzu bereits zahlreiche Aktivitäten und Initiativen zu verzeichnen. Bis her beziehen sich die Betrachtung und Analyse des CO₂-Ausstoßes jedoch in erster Linie auf die Produktionsstätte – also auf die Produktion – und noch in geringerem Maße auf die dadurch verursachten Transporte.2

2 Wie z. B. der Emissionshandel und CO₂-Zertifikate; vgl.: Studie aus Hahn, et al. (2009).
3 Vgl. VDA (2012).
Diese und weitere aktuelle Entwicklungen zeigen, dass die Thematik an Relevanz gewinnt. So sind bspw. bei Unternehmen, die Haushaltsgeräte oder Unterhaltungselektronik herstellen, ähnliche Projekte zu beobachten. Dennoch lässt sich feststellen, dass der Automobilindustrie auch aufgrund des intensiven öffentlichen und politischen Interesses eine gewisse Vorreiterrolle zukommt.

Aus den bereits zu verzeichnenden Aktivitäten spricht auch die Hoffnung der Unternehmen, Wettbewerbsvorteile zu erlangen, indem die auf Nachhaltigkeit ausgerichteten Anstrengungen intensiv an den Endkunden kommuniziert werden. Es fällt jedoch schwer, objektiv zu beurteilen, wie weit die Hersteller im Wettbewerbsvergleich wirklich sind und wie ehrgeizig sie die Projekte angehen.\(^5\) Gleichzeitig steigt der Handlungsdruck auf die Automobilhersteller, sich mit der Thematik und der Entwicklung und Umsetzung von Konzepten für eine nachhaltigere Ausrichtung des Unternehmens und der Prozesse auseinanderzusetzen. Insbesondere in der Gestaltung des Zuliefernetzwerkes und den dazugehörigen Lieferketten besteht ein großes Optimierungspotenzial.\(^6\)

So besteht durchaus eine realistische Wahrscheinlichkeit, dass OEMs sich in Zukunft intensiv um ein emissionsärmeres Liefernetzwerk bemühen. Somit wird es auch für Zulieferer unumgänglich werden, sich auf diese Entwicklungen einzustellen, um den künftigen Anforderungen gerecht zu werden. Neben Verordnungen, Richtlinien und Normen, welche die Automobilindustrie bereits betreffen – z. B. die von der Europäischen Union verabschiedete Richtlinie 70/220/EWG, die die zulässigen Abgasemissionen der Personenkraftwagen und leichten Nutzfahrzeuge regelt –, wird in Zukunft die Forcierung effizienter und ressourcenschonender Logistik zunehmend wichtig:

- Seit Oktober 2013 müssen die Emissionen aller Transporte in Frankreich per Gesetz ausgewiesen werden.\(^7\)
- Seit 2012 unterliegt der Luftverkehr in Europa dem Emissionshandel.
- Seit der im März 2013 veröffentlichten DIN EN 16258 liefert diese eine Methode zur Berechnung und Deklaration des Energieverbrauchs und der Treibhausgasemissionen bei Transportdienstleistungen (Güter- und Personenverkehr).\(^8\)

Spätestens wenn ein Instrumentarium wie der *Emissionshandel im Verkehr* realisiert wird, wird der Druck auf die OEMs und damit auch auf die Zulieferer enorm steigen.\(^9\)

\(^7\) Décret no 2011: 1336.
\(^8\) Vgl. DIN EN 16258: 2012.
zu erreichen und gleichzeitig geeignete Möglichkeiten zur Ermittlung bzw. Berechnung der freigesetzten Emissionen zur Verfügung zu stellen.

1.2 Aufbau und Methodik

Um Ansatzpunkte für die Ermittlung und Berechnung der CO2-Emissionen entlang der Wertschöpfung zu erhalten, werden aktuell verfügbare Methoden dargestellt und diskutiert. Dabei liegt ein besonderer Fokus auf der Norm DIN EN 16258, die hierfür erstmals ein standardisiertes Vorgehen skizziert. Ein Überblick über IT-gestützte Berechnungstools ist ebenfalls enthalten.

Auf Basis dessen wird innerhalb des Beitrags ein Ansatz vorgestellt, wie die Berechnung und die Bewertung der Emissionen insbesondere in der Automobilindustrie aussehen und sich im Management der Wertschöpfungskette als neue Steuergröße und damit als Wettbewerbsfaktor etablieren lassen könnten.

1.3 Betrachtungsweise des CO2-Ausstoßes

Unternehmen, die bei Produktion und Verteilung ihrer Produkte weniger emittieren, können ihre gesamte Lieferkette effizienter gestalten und damit Kostenvorteile generieren. Zudem vermeiden sie Risiken wie drohende Regulierung oder Reputationsverlust. 10

Im Supply Chain Management spielt heute die Betrachtung der Zulieferprozesse anhand des Flusses von Informationen, Werten und Materialien über die Wertschöpfungskette

CO$_2$ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

hinweg die prägende Rolle. Vor dem Hintergrund der wachsenden Bedeutung der CO$_2$-Emissionen erscheint eine Erweiterung der klassischen Parameter um den CO$_2$-Ausstoß sinnvoll. Abbildung 1 zeigt, wie sich die Betrachtungsweise entlang der Wertschöpfungskette dadurch erweitern würde. Dies bedeutet, dass eine vollständige und belastbare Aussage nötig – aber auch nur möglich – ist, wenn der sog. Product Carbon Footprint (PCF) über alle Zulieferprozesse hinweg ermittelt wird.

Abbildung 1: Wert-, Material- und Informationsfluss sowie CO$_2$

2 Umweltwirkungen der Lieferkette

Um eine Einschätzung der wirtschaftlichen Wirkung einer spezifischen Lieferkette überhaupt vollständig vornehmen zu können, ist es nötig, eine erweiterte Sichtweise einzunehmen. Über die ökonomische Betrachtung der Wertschöpfungskette anhand der etablierten Faktoren hinaus, ist die Annahme zu beachten, dass jede Wertschöpfungsaktivität eine Belastung der Umwelt hervorruft. Diese wiederum hat makro- und mikroökonomische sowie finanzielle Auswirkungen, die durch unterschiedliche Gruppierungen und auf verschiedenen Ebenen in Wirtschaft und Gesellschaft getragen werden müssen.

Hauptursachen der erzeugten Umweltwirkungen bzw. -belastungen sind hier sowohl die im Rahmen der Produktproduktion eingesetzten Materialien und die verbrauchte Energie als auch die neben dem erwünschten Produkt entstehenden gasförmigen, flüssigen oder festen Reststoffe. Ausgehend von der Summe der Wirkungen der Produktion und der Produkte selbst auf die Umwelt ist es möglich, von mehr oder weniger umweltbelastenden Produkten zu sprechen.12

Abbildung 2 zeigt diesen Zusammenhang schematisch anhand einer modellhaften Lieferkette auf: von Rohstofflieferanten über die verschiedenen Lieferantenstufen (Tiers) der Verarbeitung und den Produkt hersteller (OEM) bis hin zur Nutzung und Entsorgung bzw. Wiederverwendung bestimmter Bestandteile.

Abbildung 2: Umweltwirkungen in der Lieferkette

CO₂ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

Broschüren des Bundesumweltministeriums (BMU)⁴⁴ zeigen z. B. für den Bereich Energie- und Ressourceneffizienz in Berufsbildung und Arbeit Nachhaltigkeitsstrategien, Einsparpotenziale und Maßnahmen auf. Energieeffizienz meint, dass ein gewünschter Nutzen mit einem möglichst geringen Energieeinsatz erreicht wird. Ressourceneffizienz hat zum Ziel, das gleiche Produktionsergebnis bzw. die gleiche Dienstleistung mit weniger Naturverbrauch (Ressourcen) zu erbringen. Ressourceneffizienz ist also der weitreichendere Begriff und bezieht sich auf die natürlichen Ressourcen Boden (mit allen mineralischen Rohstoffen, fossilen Energieträgern etc.), Wasser und Luft – einschließlich der Biosphäre (Lebensräume).¹⁵

2.1 Definition Umweltwirkung

Zu den Umweltwirkungen zählen sämtliche umweltrelevanten Entnahmen aus der Umwelt (z. B. Erze, Rohöl) sowie die Emissionen in die Umwelt (z. B. Abfälle, Kohlendioxidemissionen).¹⁶

¹⁴ BMU: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Bei der Betrachtung der Effekte von Umweltwirkungen mit Bezug zur wirtschaftlichen Lage eines Unternehmens im Wettbewerb ist die Lieferkette deshalb von besonderer Bedeutung, weil nur dann abgeschätzt werden kann, welche Auswirkungen ein Produkt verursacht, wenn die Beziehungen innerhalb der Lieferkette bekannt sind. Daher ist die Schaffung von Transparenz in der Lieferkette ein wichtiger Faktor, um diese Auswirkungen erfassen, bewerten und schlussendlich auch gezielt steuern zu können. Zusätzlich erschwert wird diese Aufgabe, da im Zuge der Globalisierung in den letzten Jahrzehnten vermehrt Handelsbarrieren abgebaut, Märkte verknüpft und damit die Möglichkeit geschaffen wurde, (Vor-)Produkte und Dienstleistungen zunehmend global zu beschaffen. Diese Entwicklung führt zum einen dazu, dass die zu betrachtenden Liefernetzwerke die Tendenz aufweisen, noch komplexer zu werden. Zum anderen werden sich ihre Umweltwirkungen je nach Gestaltung weitaus stärker unterscheiden als dies in der Vergangenheit schon der Fall war.

Des Weiteren spielt die Gestaltung der Transportprozesse eine große Bedeutung, wobei sich vorrangig folgende Fragen auftun:

- Wo werden die unterschiedlichen Güter beschafft?
- Über welche Routen wird transportiert?
- Welche Verkehrsträger werden eingesetzt?
- Wie oft werden die Güter umgeschlagen?

Durch Transporte entstehen auch indirekte Umweltwirkungen, wie der Energieverbrauch oder der verursachte Lärm.

2.2 Treibhausgase im Fokus der Betrachtung

Die Betrachtung der Umweltwirkungen in Form von Treibhausgas- und insbesondere CO₂-Emissionen ist besonders in den Fokus gerückt. Es geht dabei aber nicht lediglich um ökologisch getriebene Ansätze. Vielmehr ist hier festzustellen, dass die Zusammenarbeit mit nachhaltig arbeitenden Zulieferunternehmen und die konsequente Optimierung des Lieferkettenmanagements nach CO₂-Gesichtspunkten für Unternehmen einen wesentlichen

Bei Einsatz einer geeigneten Methode kann die Aufstellung und Analyse produktbezogener CO2- und THG-Bilanzen Unternehmen helfen, die komplexen Wertschöpfungsnetze hinsichtlich der THG-Emissionen zu optimieren. Das Wissen um die CO2- bzw. THG-Emissionen in der unternehmerischen Wertschöpfungskette entwickelt sich zu einer strategischen Kontrollgröße für Qualität, Sicherheit und Zukunftsfähigkeit der Produktionsprozesse in der sich entwickelnden Low Carbon Society.22 Da die Erfassung von THG-Emissionen gegenüber der weiteren zahlreichen lieferanteninduzierten Umweltwirkungen realistisch gesehen bisher am ehesten durchführbar erscheint, wird im Folgenden die Untersuchung auf die Treibhausgasemissionen fokussiert.

2.3 CO2 und CO2-Messgrößen

Bei der Bewertung der Emissionen von Transportprozessen stellt sich zudem noch die Frage, ob Emissionen, die beim Brennbrennen des fossilen Kraftstofes freigesetzt werden27, oder ob zusätzlich auch die Emissionen, die bei der Energieproduktion entstehen, betrachtet werden sollten.
Hierfür haben sich in der Mobilität die Begriffe Tank-to-Wheel (TTW) und Well-to-Wheel (WTW) etabliert. TTW berücksichtigt die Emissionen, die vom Kraftfahrzeugtank aus gesehen entstehen, um das Fahrzeug in Bewegung zu setzen. WTW berücksichtigt zusätzlich die Emissionen, die bei der Herstellung von Antriebsenergien ab der Primärenergiequelle – bspw. Rohöl – entstehen.

2.4 CO₂ beim Lieferanten

Bei einem Wertschöpfungsanteil von weniger als 50 Prozent, was in der Automobilbranche heutzutage eher den Regelfall als die Ausnahme darstellt, sind der größte Anteil der Emissionen und damit das größte Einsparpotenzial eher außerhalb der eigenen Produktion zu finden. Wie auch im eigenen Unternehmen entstehen beim Lieferanten im Zuge des Produktentstehungsprozesses CO₂-Emissionen. Sowohl direkte Emissionen, die z. B. durch den Einsatz fossiler Brennstoffe freigesetzt werden, als auch indirekte Emissionen z. B. aus bereitgestellter Energie wie Wärme und Strom, Geschäftsreisen, Kantinennutzung etc. und zudem durch den Transport zwischen den einzelnen Stufen der Wertschöpfung, sind bei einer vollständigen Betrachtung zu berücksichtigen. Sollen also die Emissionen entlang der Lieferkette erfasst werden, so müssen alle in das Endprodukt einfließenden oder für den Produktentstehungsprozess benötigten Bereiche einbezogen werden.

Durch ein besseres Verständnis der Emissionen, welche ein Produkt verursacht, können Entscheidungen getroffen werden, die ökonomisch und ökologisch belastbar sind. Wenn z. B. transparent wird, dass die Umweltwirkungen bei einem Produkt höhere Kosten verursachen als die Preisendifferenz zu einem alternativen Lieferanten ausmacht, welcher bei den Umweltwirkungen bessere Ergebnisse erzielt, könnte dies zu einem sinnvollen weiteren Vergabemerkmal werden.

So gibt bspw. der im Rahmen des Greenhouse-Gas-Protokolls (GHG-Protokoll) verankerte Scope-3-Standard Unternehmen den Anreiz, eine solch übergreifende Perspektive zu entwickeln und sich des Einflusses über die direkten Emissionen hinaus bewusst zu werden. Das GHG-Protokoll ist eines der weltweit führenden Standards zur CO₂-Footprintberechnung von Unternehmen und Organisationen (s. Kapitel 3.1.2).

Der Aufwand einer Erhebung der lieferanteninduzierten Emissionen kann im Vergleich zur Erhebung der selbst induzierten Emissionen deutlich größer ausfallen. Er variiert u. a. in

28 Sog. indirekte Emissionen.
29 Auch als direkte oder betriebsbedingte Emissionen bezeichnet.
31 S. dazu auch Kapitel 4.1.
32 Als Scope-3-Emissionen verstehen sich THG-Emissionen, die ein Unternehmen indirekt verantwortet, d.h. Emissionen, welche nicht im eigenen Betrieb entstehen, sondern solche, die den eigenen Aktivitäten vor- und nachgelagert sind.
33 S. dazu im Detail Kapitel 3.1.

Die steigende Transparenz erhöht das Verständnis entlang der Wertschöpfungskette der Produkte und ermöglicht so erst eine gezielte Steuerung der Kette und damit auch des Ausstoßes von Treibhausgasen. Dem heute noch hohen Aufwand der Bilanzierung stehen mittel- bis langfristige Strategien gegenüber. So werden z. B. zukünftig die Harmonisierungs- und Standardisierungsbemühungen der EU und der einzelnen Staaten voraussichtlich weiter vorangetrieben, in welchen auch Datenformate zur digitalen Übertragung und Berichterstattung entlang der Wertschöpfung vorgesehen sind.
3 Regulierende Normen und Standards zum CO₂-Ausstoß

Einige dieser Aktivitäten werden jedoch wohl vor allem aus Marketinggründen vorangetrieben, was sich daran festmachen lässt, dass es weitgehend gleichgültig erscheint, ob sich die Betrachtung nur auf die eigenen Herstellungskosten, den Verbrauch und die Entsorgung von Produkten und damit um einzelne Aktivitäten im unternehmerischen Privatsektor handelt oder ob das ganze Unternehmen bzw. sogar ein weiter gefasster Kontext in die Berechnungen einbezogen wird. Entsprechend zahlreich, wie die unterschiedlichen Herangehensweisen, sind die Angebote standardisierter Berechnungsmethoden. In der Finanz- und Versicherungswirtschaft etabliert sich z. B. die Verankerung einer Klimastrategie als bedeutendes Bewertungskriterium für unternehmerisches Risiko. Investoren orientieren sich vermehrt an Rankings von Initiativen wie z. B. dem bereits genannten CDP, bei welchem die Transparenz der Berichterstattung über CO₂-Emissionen bewertet wird. Auch bei der Vergabe von Krediten werden oftmals Unternehmen bevorzugt, die in klimafreundliche Produkte und Technologien investieren. Ein echter, weithin anerkannter Standard lässt sich Stand heute jedoch noch nicht ausmachen.

Das Kyoto-Protokoll und dessen Folgeakten, als die bisher weitreichendste internationale Vereinbarung mit vergleichsweise großem Effekt auf staatliches und zudem auf

27 Vgl. CO₂ncept plus (2013).
unternehmerisches Handeln, bieten drei Mechanismen, die den Industrieländern dabei helfen sollen, ihre Reduktionsziele möglichst effizient zu erfüllen:

1. Internationaler Emissionshandel
2. Klimaschutzprojekte gemäß des Clean Development Mechanism (CDM)\(^{38}\)
3. Klimaschutzprojekte gemäß des Mechanismus Joint Implementation (JI)\(^{39}\)

Kompensationsmaßnahmen sollten demnach nur dann ergriffen werden, wenn sich die Minderung bzw. Vermeidung des Treibhausgasausstoßes durch die eigenen Aktivitäten nicht ohne weiteres vornehmen lässt. Wenn dies gegeben ist, bringen Kompensationsmaßnahmen jedoch zwei wichtige Vorteile. Zum einen entsteht durch die freiwillige Kompensation einzelner CO\(_2\)-intensiver Aktivitäten zumindest ein Bewusstsein für die eigenverursachten Emissionen. Durch eine freiwillige Kompensation konkreter emissionsverursachernder Aktivitäten werden dem Individuum bzw. der einzelnen Unternehmung der Umfang und die Kosten der eigenen CO\(_2\)-Bilanz näher gebracht, wodurch zumindest erwartet werden kann, dass das grundsätzliche Bewusstsein hinsichtlich der Emissionen steigt. Zum anderen können Kompensationsprojekte je nach Qualität zusätzliche positive Auswirkungen auf die nachhaltige Entwicklung der Länder, in denen die Umsetzung tat-

Im internationalen Sprachgebrauch wird freiwillige Kompensation auch als Voluntary (Carbon) Offsetting bezeichnet. Man spricht von freiwilliger Kompensation, wenn die Kompensation nicht getätigt wird, um ein bestimmtes, verbindliches Emissionsziel zu erreichen, wie es einigen Ländern im Kyoto-Protokoll vorgegeben ist.

Vgl. DEHST (2013b).
Vgl. DEHST (2013c).
S. DEHST (2013c).
leistungen in Anspruch nehmen. Hier verspricht der Anbieter, die mit Erzeugung, Vertrieb oder Nutzung der Ware einhergehenden Treibhausgasemissionen auszugleichen. So gibt es z. B. Druckereien, die Dokumente für ihre Kunden auf Wunsch klimaneutral drucken lassen. Viele Möglichkeiten zur Kompensation werden über das Internet vertrieben und sind dadurch vergleichsweise einfach erhältlich.

3.1 Verfügbare Normen und Standards

Ein Großteil der Normen, Leitlinien und Standards bezieht sich auf das GHG-Protokoll46, welches durch die The Green House Gas Initiative (TGHI) hervorgegangen ist, die durch das World Business Council for Sustainable Development (WBCSD) und das World Resource Institute (WIR) gegründet wurde. Es gilt als der international am weitesten verbreitete freiwillige Standard für die Erhebung und Berechnung innerbetrieblicher Treibhausgasemissionen durch Produktion und Betrieb. Das GHG-Protokoll sieht eine Aufteilung der

45 Vgl. CO₂ncept plus (2013).
THG-Emissionen in drei Scope-Kategorien vor, was von vielen der veröffentlichten Normen, Standards und Leitfäden adaptiert wird.

Es existieren zudem bisher folgende Normen und Leitfäden, die sich mit der Berechnung bzw. Messung von Treibhausgasemissionen – insbesondere CO₂-Emissionen – befassen, die in den folgenden Abschnitten weiter erläutert werden:

- DIN EN 16258:2012
- Serie ISO 14000
- ISO 14040/44
- ISO 14064
- ISO 14067
- ISO/DIS 11771
- BSI PAS 2050
- Amtsblatt der EU 2004/156/EG
- PEF-Guide
- Leitfaden des Deutsche Speditions- und Logistikverbands (DSLV)
- französisches Dekret Nr.2011-1336

Die DIN EN 16258 als deutsche Fassung der DIN EN 16258:2012 beinhaltet bspw. eine Methode zur Berechnung und Deklaration des Energieverbrauchs und der Treibhausgasemissionen bei Transporthandlungen im Güter- und Personenverkehr. Weitere Standards oder Richtlinien, die eine Anleitung zur Vorgehensweise bei der Berechnung oder Messung von Treibhausgasemissionen geben, sind z. B. das Handbuch zur Nutzung des Globalen Emissions-Modells Integrerter Systeme (GEMIS)\(^{49}\), BMU/BDI-Broschüren\(^{50}\), diverse Clean Development Mechanism-Methoden\(^{51}\) sowie ein Leitfaden des deutschen Speditions- und Logistikverbandes (DSLV)\(^{52}\).

50 BMU (2012f).
51 Vgl. CDM (2012).
betachtet werden, welche Systemgrenzen vorherrschen und ob es zulässige Methoden zur Allokation auf einzelne Transporte gibt. In den folgenden Abschnitten werden die einzelnen Normen und Standards im Detail erläutert.

<table>
<thead>
<tr>
<th>Umweltmanagement (Kapitel 3.1.1)</th>
<th>Unternehmensklimabilanzen (Kapitel 3.1.2)</th>
<th>Produktklimabilanzen (Kapitel 3.1.3)</th>
<th>Bilanzen von Transportdienstleistungen (Kapitel 3.1.4)</th>
<th>Umweltfußabdruck von Produkten (Kapitel 3.1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normen, Standards, Richtlinien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serie ISO 14000</td>
<td>ISO 14064-1; GHG-Protokoll</td>
<td>PAS 2050; GHG-Protokoll; ISO 14040/44 (LCA); ISO 14067</td>
<td>DIN EN 16258:2012; DSLV-Leitfaden (2. überarbeitete Ausgabe 2013)</td>
<td>PEF-Guide</td>
</tr>
<tr>
<td>Systemgrenzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktivitäten des eigenen Unternehmens</td>
<td>Aktivitäten des eigenen Unternehmens verpflichtend; Einbezug von Subunternehmern freiwillig</td>
<td>Gesamte Wertschöpfungskette, unabhängig, ob eigene oder Fremdprozesse</td>
<td>Gesamte Transportkette, unabhängig, ob eigene Fahrzeuge oder Fahrzeuge von Subdienstleistern</td>
<td>Gesamte Wertschöpfungskette, unabhängig, ob eigene oder Fremdprozesse</td>
</tr>
<tr>
<td>Umweltkenngrößen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alle Treibhausgase (als CO2-Äquivalente); Umweltwirkungen</td>
<td>Alle Treibhausgase (als CO2-Äquivalente)</td>
<td>Alle Treibhausgase (als CO2-Äquivalente) und Energieverbrauch</td>
<td>Alle Treibhausgase (als CO2-Äquivalente); weitere Umweltwirkungen</td>
<td></td>
</tr>
<tr>
<td>Zulässige Methoden zur Allokation der Emissionen auf Einzel sendung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keine Vorgaben</td>
<td>Keine Vorgaben</td>
<td>Möglichst physikalische Größen (z. B. Gewicht); auch monetäre Größen zulässig</td>
<td>Nur physische Größen (bevorzugt Gewicht, Anzahl Paletten, Lademeter, TEU etc.)</td>
<td>Keine Vorgaben</td>
</tr>
</tbody>
</table>

Tabelle 1: Standards und Normen zur Erfassung von Umweltwirkungen

3.1.1 Umweltmanagement

Die ISO 14004 ist ein Leitfaden, der die Unternehmen beim Aufbau bzw. der Verbesserung von Umweltmanagementsystemen unterstützen soll. Sie beinhaltet Beispiele und Checklisten.

Die drei Dokumente ISO 14010, 14011 und 14012 regeln das Umweltmanagementsystem-Audit.

Allgemeine Anforderungen für die Vergabe von Umweltzeichen beinhaltet die ISO 14020.

Für die Durchführung einer Produktlebenszyklusanalyse ist die ISO 14040 dienlich. Diese stellt Prinzipien und Grundlagen für die Erstellung und Bewertung einer Produktökobilanz vor.

In ISO 14050 werden Begriffe und Definitionen zusammengefasst.

3.1.2 Unternehmensklimabilanzen

Greenhouse-Gas-Protokoll

Das GHG-Protokoll bezieht sich auf die Emission von Treibhausgasen im Sinne des Kyoto-Protokolls und erfasst somit ausschließlich klimaspezifische Umweltwirkungen.\(^{54}\)

Scope 1

umfasst alle THG-Emissionen, die direkt im Unternehmen anfallen, so etwa THG-Emissionen aus der Verbrennung stationärer Quellen (z. B. in einem Heizkessel) oder mo-

biler Quellen (z. B. durch den unternehmenseigenen Fuhrpark), THG-Emissionen aus der Produktion oder aus chemischen Prozessen sowie flüchtige THG-Emissionen.

Scope 2

berücksichtigt alle indirekten THG-Emissionen, die bei der Energiebereitstellung des Unternehmens entstehen, d. h. alle THG-Emissionen, die bei der Herstellung und Bereitstellung von elektrischer Energie, Erdgas oder Fernwärme durch das Energieversorgungsunternehmen verursacht werden.

Scope 3

DIN EN ISO 14064

Die hierfür notwendigen Akkreditierungsbestimmungen, denen sich die Prüfungsgesellschaft unterziehen muss, empfiehlt ISO 14065, welche für die weitere Betrachtung im Rahmen dieser Studie jedoch von untergeordneter Bedeutung ist.
3.1.3 Produktklimabilanzen

Derzeit bestehen in Deutschland keine Gesetze, einen PCF im Sinne einer Produktklimabilanz verpflichtend zu erfassen. Allerdings liegen auf internationaler Ebene bereits in einigen Ländern gesetzliche Verpflichtungen vor, nach denen Produkte mit einem PCF versehen werden müssen. Institutionen wie die o. g. GHG-Initiative oder die International Organization for Standardization (ISO) haben methodische Empfehlungen zur PCF-Erfassung formuliert.

Hierzu zählen:

- der Product Life Cycle Accounting and Reporting Standard
- die Normserie ISO 14044
- die sich in der Entwicklung befindende ISO 14067 „Carbon Footprint of Products“
- die PAS-Norm 2050

Die PCFs wurden ursprünglich entwickelt, um Konsumenten über die mit einem Produkt einhergehenden Treibhausgasemissionen zu informieren. Um PCFs wirksam an die Kunden zu kommunizieren und ein klimabewusstes Kaufverhalten anzuregen, wurden zahlreiche Carbon Labels entwickelt, z. B. vom Carbon Trust in Großbritannien oder der Indice Carbone in Frankreich.

BSI PAS-Norm 2050

Auch wenn die PAS 2050 in Großbritannien bereits weitläufigen Gebrauch findet, ist sie keine verbindliche gesetzliche Regelung. Kritiker beanstanden, dass die PAS 2050 eine Reihe von Fragestellungen offenlässt. So bleibt bspw. unklar, wie Flugemissionen oder Treibhausgasemissionen von Investitionsgütern berücksichtigt werden können. Auch lässt die PAS 2050 die indirekte Landnutzungsänderung und das Ökostromproblem außer Acht, denn nach der Vorgabe der PAS 2050 wird gesondert gelieferter Ökostrom grundsätzlich nicht erfasst.

ISO 14067

Bestandteile der Norm sind ISO 14067-1: Quantifizierung, welche auf der ISO 14044 aufbaut, und ISO 14067-2: Kommunikation, welche sich auf die ISO 14025 bezieht. Die DIN-Arbeitsgruppe NA 172 beschäftigt sich mit den Grundlagen des Umweltschutzes in Deutschland und unterstützt u. a. die Arbeiten der ISO mit dem Arbeitskreis NA 172-00-03-01 Carbon Footprint.57

ISO 14040/44

Abhängig von gewählten Systemgrenzen kann auch nur ein Teil des Produktlebenszyklus abgebildet werden. Im B-to-B-Bereich wird häufig das Emissionsaufkommen der Produkts
on inklusive der Vorketten (Cradle-to-Gate) erfasst. Für B-to-C-Beziehungen werden meist die Emissionsdaten von der Vorketten und der Produktion bis zum sog. Point of Sale, also dem Ort, an dem der Endkunde das Produkt kauft, summiert.

3.1.4 Bilanzen für Transportdienstleistungen

EN 16258 – in der Deutschen Fassung DIN EN 16258:2012

Durch die Grundidee, den Inhalt und die Struktur der Norm wurde versucht, sie im gesamten Transportsektor durch unvoreingenommene Berücksichtigung aller Verkehrsträger anwendbar und für ganz unterschiedliche Benutzergruppen zugänglich zu machen. Innerhalb des Sektors unterscheiden sich die Transportvorgänge erheblich. Es finden von multinationalen Organisationen, die verschiedene Verkehrsträger verwenden, um weltweit Transportdienstleistungen zu erbringen, bis hin zu einem kleinen lokalen Frachtführer, der eine einfache Dienstleistung für einen Nutzer erbringt, alle Fälle Eingang in die Berechnungsmethoden.

Außerdem ist die potenzielle Nutzergruppe dieser Norm in ähnlicher Weise vielfältig. Das Erfassen von Transportenergie und Emissionen innerhalb von Organisationen kann mit verschiedenen Detaillierungsgraden und auf unterschiedlichen Niveaustufen erfolgen. Infolgedessen versucht die Norm, für einen Ausgleich zwischen dem Wunsch nach größtmöglicher Präzision und wissenschaftlicher Stringenz sowie ein angemessenes Maß an Pragmatismus zu sorgen, um Benutzerfreundlichkeit, Zugänglichkeit und eine möglichst breite Anwendung zu erreichen. Die Anwendung der Norm sorgt bei der Berechnung und Deklaration von Energieverbrauch und Emissionen bei Transportdienstleistungen für eine gemeinsame Vorgehensweise und gemeinsame Rahmenbedingungen. Dies soll sicherstel-
len, dass Deklarationen eine größere Übereinstimmung und Transparenz aufweisen und ordnet Energie und Emissionen der Nutzlast und damit dem transportierten Gut eines Fahrzeugs vollständig zu. Zukünftige Fassungen der Norm werden voraussichtlich einen noch umfangreicher Anwendungsbereich abdecken, um weitere Gesichtspunkte wie Umschlagpunkte, Umschlagtätigkeiten und weitere Phasen des Lebenszyklus einzubeziehen.63

DSLV-Leitfaden

Der Leitfaden umfasst Grundlagen, Standards und Normen. Zudem beschreibt er Wege zur standardisierten Berechnung von Verbrauchswerten und Emissionen und erläutert die Berechnungsmethoden für Transporte anhand von Beispielen. Der Leitfaden orientiert sich dabei mittlerweile an der vorgenannten Norm DIN EN 16258 Methode zur Berechnung und Deklaration des Energieverbrauchs und der Treibhausgasemissionen bei Transportdienstleistungen.

3.1.5 PEF-Guide – Umweltfußabdruck von Produkten

Die erste Phase ist eine dreijährige Testphase, in der die Methoden auf freiwilliger Basis getestet werden sollen. Die Kommission möchte die Methoden schrittweise in das System für Umweltmanagement und Umweltbetriebsprüfung (EMAS), das umweltorientierte öffentliche Beschaffungswesen (Green Public Procurement, GPP) und das EU-Umweltzeichen einbeziehen. Im Zuge der Durchführung der Richtlinie zu unlauteren Geschäftspraktiken plant die Kommission weitere Leitlinien für die angemessene Kommunikation von Umwelteigenschaften.

In der zweiten Phase sollen die Ergebnisse evaluiert und dann geeignete Vorschläge für die Umsetzung ausgearbeitet werden. Das BMU begrüßte im April 2013, dass diese Methodik in einer dreijährigen Testphase auf ihre Tauglichkeit hin überprüft werden soll. Angesichts praktischer Schwierigkeiten – z. B. bei der Vergleichbarkeit der Datenerhebung – zeigte sich das BMU aber zurückhaltend in der Beurteilung der Erfolgsaussichten der Methodik. Ein großer Nutzen der Methodik wird darin gesehen, dass der Umweltfußabdruck (PEF / OEF) Unternehmen in die Lage versetzen kann, Transparenz über die produkt- bzw. organ-
nisationsbezogenen Umweltwirkungen zu erlangen und sinnvolle Verbesserungsoptionen über den gesamten Lebenszyklus zu identifizieren und zu erschließen. In April 2015 sind hierfür erste Pilotprojekte gestartet.

3.1.6 Weitere relevante Richtlinien und Normen

ISO/DIS 11771

Der komplette Titel der Norm ISO/DIS 11771 lautet „ÖNORM EN ISO 11771 – Luftbeschaffenheit – Ermittlung von zeitlich gemittelten Massenemissionen und Emissionsfaktoren – Allgemeine Vorgehensweise“. Sie legt allgemeine Verfahren zur Ermittlung und Meldung...
von zeitlich gemittelten Massenemissionen einer bestimmten Anlage oder einer Gruppe
von Anlagen (oder eines gemeinsamen Quelltyps) fest. Die Norm beinhaltet Verfahren zur
Ermittlung des Emissionsmassenstroms bezüglich der Planung, der Art und des Umfangs
der zu sammelnden Daten und Messungen und eine Sammlung von Aktivitätsdaten. Des
Weiteren regelt die Norm den Umgang mit Schätzungen der Unsicherheit des Emissions-
massenstroms. Die Ermittlung von zeitlich gemittelten Emissionsfaktoren, die Schätzung
der Unsicherheit von Emissionsfaktoren und die Anforderungen an ein Qualitätssystem,
insbesondere an Verfahren zur Qualitätslenkung und Maßnahmen zur Qualitätssicherung,
werden durch sie vorgegeben.

3.1.7 Französische Verordnung Nr. 2011-1336

Die französische Verordnung Nr. 2011-1336 „Information über die Menge der Kohlendi-
oxidemissionen einer Beförderungsleistung“ wurde 2011 veröffentlicht. Seit dem 1. Okto-
ber 2013 müssen CO₂-Werte von kommerziell durchgeführten Personen- und Gütertrans-
porten, die ihren Start- oder Zielpunkt in Frankreich haben, gegenüber dem Kunden einer
Transportdienstleistung ausgewiesen werden. Grundsätzlich entspricht die Verordnung
methodisch dem europäischen Standard der DIN EN 16258. Im Gegensatz dazu ist die
Auskunft für kommerziell angebotene Transporte, deren Start- oder Zielort in Frankreich
liegt, jedoch nicht freiwillig, sondern verpflichtend. Betrachtet werden hier alle Verkehrsmittel
des Personen- und Güterverkehrs.

Ausgewiesen werden sollen ausschließlich die CO₂-Emissionen im Well-to-Wheel-
Verständnis. Die zusätzliche Information der Aufteilung – z. B. die Angabe von Tank-to-
Wheel-Werten – ist somit freiwillig. Es werden bei dieser Verordnung lediglich Transporte
berücksichtigt, nicht aber Umschlagprozesse. Weitere Systemgrenzen sind hier, dass Her-
estellung, Unterhalt und Entsorgung von Fahrzeugen und Verkehrsanlagen nicht berück-
sichtigt werden wie Kältemittelverluste.

Die CO₂-Umrechnungsfaktoren pro Liter oder Kilogramm Kraftstoff müssen einem Erlass
des französischen Verkehrsministeriums entnommen werden. Diese Umrechnungsfakto-
ren basieren auf französischen Quellen und entsprechen nicht denen der Norm EN 16258.
Hier werden vier Stufen genannt, welche in ihrer Reihenfolge präferiert werden:

1. Stufe 1 stellt die Vorgabewerte entsprechend des Erlasses des Verkehrsministeri-
ums dar.
2. Stufe 2 sind Flottendurchschnittswerte.
4. Stufe 4 sind konkret für die Beförderungsleistung gemessene Werte.

Bei Fahrten ohne Ladungswechsel werden Masse, Volumen, Fläche, Lademeter oder
Frachtstück als Allokationsparameter genannt. Ansonsten dient das Produkt aus diesen
Größen mit der Entfernung als Parameter. Leerfahrten gilt es zu berücksichtigen, jedoch
wird kein genaues Verfahren hierfür festgelegt.

Die Informationen müssen zum vereinbarten Datum oder andernfalls binnen zwei Mona-
ten nach Ende der Leistungserbringung zur Verfügung gestellt werden. Der Nachweis der
Konformität muss durch eine zugelassene Stelle erfolgen. Der Erlass schreibt vor, welche
Default-Werte für den spezifischen Energieverbrauch pro Fahrzeug-, Bahn oder Schiffs- kilometer zu verwenden sind.

3.1.8 Einordnung und Gegenüberstellung

![Abbildung 3: Einflussbereiche der Standards und Normen zur Erfassung von Umweltwirkungen](image)

3.2 Weitere Entwicklungen

Es ist abzusehen, dass einige der Aktivitäten in nicht allzu ferner Zukunft weitere Neuerungen mit sich bringen werden, die von Relevanz für die Betrachtung von CO₂-Emissionen sind.

In der Verantwortung der Automobilhersteller liegt es bereits heute, möglichst energieeffiziente und schadstoffarme Fahrzeuge herzustellen. Spätestens dann, wenn nicht nur das Produkt selbst, sondern auch dessen Produktion mit in die Betrachtung einbezogen werden soll, steigt der Handlungsdruck auf die OEMs und deren Zulieferer, die Emissionen messbar und transparent zu machen.

\(^7\) FAZ (2015).
Gegensatz zum NEFZ wesentlich dynamischer und beinhaltet deutlich mehr Beschleunigungs- und Bremsvorgänge als sein Vorgänger.

Neben dem eigentlichen Fahrprofil wurde auch die Messprozedur international vereinheitlicht und an die aktuelle Fahrzeugtechnik angepasst. Ziel war es, die Realität möglichst genau abzudecken, mögliche Varianzen weitgehend zu reduzieren und den Testaufwand so gering wie möglich zu halten.

Die Entwicklung des WLTP ist in aufeinanderfolgende Phasen eingeteilt. Die erste Phase definiert den Zyklus sowie die Testprozeduren und ist somit die Basis, die für eine Anwendung des WLTP in der Gesetzgebung notwendig ist. In der zweiten Phase sollen weitere Punkte wie die On-Board-Diagnose und weitere Nebenverbraucher (z. B. Klimaanlagen) berücksichtigt sowie In-Use-Themen bearbeitet werden.

73 Vgl. VDA (2015).
Geltungsbereich auf Produktionsprozesse ausgeweitet wird, wird die Gefahr von z. B. monetären Strafen real und der Handlungsdruck steigt.

4 Der CO₂-Ausstoß als Steuergröße

Sofern sich die in Kapitel 3.2 beschriebenen Trends in Zukunft als richtig herausstellen und dadurch THG- bzw. CO₂-Emissionen nicht nur vom eigenen Unternehmenserfolg unabhängige Auswirkungen haben, sondern ganz konkret Kosten verursachen, die über die Treibstoffkosten hinausgehen, werden CO₂-Emissionen in globalen Konkurrenzsituationen zunehmend wichtiger. Dies bedeutet, dass es sich spätestens ab diesem Zeitpunkt nicht nur aufgrund ethischer oder umweltschutzorientierter Gründe für ein Unternehmen lohnen wird, in der Wertschöpfungskette für möglichst wenige Emissionen verantwortlich zu sein. Vielmehr wird der CO₂-Ausstoß zu einem echten Wettbewerbsfaktor und damit zu einer weiteren Steuergröße in der unternehmerischen Entscheidungsfindung.

4.1 Einsatzmöglichkeiten als Steuergröße

Wenn der CO₂-Ausstoß innerhalb der Konkurrenzsituation verschiedener Wertschöpfungsketten eine größere Bedeutung erhalten sollte, stellt sich die Frage, wo und inwieweit dieser auch aktiv von Unternehmen als Steuergröße eingesetzt werden kann. Die folgende Abbildung zeigt schematisch Ansatzpunkte auf, an denen eine steuernde Wirkung möglich wäre.

Abbildung 4: Möglicher Einsatz von CO₂ als Steuergröße in der Wertschöpfungskette

Zunächst steht dabei die CO₂-Bilanz einer kompletten Wertschöpfungskette, welche sich am Ende im PCF ausdrückt und transparent wird, im Vordergrund. Soll dieser Fußabdruck vollständig ermittelt werden, so sind die Emissionen, die während der Produktion entstehen, und die transport- und logistikinduzierten Emissionen im WTW-Ansatz zu ermitteln. Ein günstiger Carbon Footprint wird sich in Zukunft wahrscheinlich in vielen Regionen der Welt positiv auf die steuerliche Behandlung von Produkten auswirken. Zudem besteht die Möglichkeit, diesen als Verkaufsausschluss in Märkten anzuwenden, welche sensibel auf Umweltwirkung und Umweltschutzargumente reagieren – so bspw. einige Märkte der EU, Japan und auch bis zu einem gewissen Grad in den USA.

75 Bspw. gemäß PAS 2050.

Nicht zuletzt ist aber auch die Möglichkeit der Interaktion mit und der Einflussnahme auf die regionale, nationale ggf. sogar internationale Politik zu beachten. Sobald eine solide und überprüfbare Datengrundlage vorhanden ist, verbessert sich die Argumentationsbasis bspw. bei der Entscheidung über Infrastrukturmaßnahmen oder auch bei der Einfluss-nahe auf weitere vom Gesetzgeber geplante Reglementierungen. Dies kann jedoch nur verlässlich der Fall sein, wenn CO₂-Emissionen durchgängig und zumindest in der vorgela-gerten Wertschöpfung in geeigneter Weise erfasst, dokumentiert und kommuniziert wer-den.

4.2 Ansätze zur Erfassung und Bewertung der Umweltwirkungen

Da ein nicht zu vernachlässigender Anteil der in der Wertschöpfungskette erzeugten Um-weltwirkungen durch Transport und Logistik hervorgerufen wird, scheint vor allem in der Gestaltung der Lieferantenbeziehungen viel Potenzial zur Vermeidung unerwünschter bzw. schädlicher Emissionen zu liegen. Dies könnte bspw. im Rahmen einer umfassenden Vollkosten- oder auch TCO-Betrachtung (Total Cost of Ownership) die Möglichkeit zur Reduktion von Kosten eröffnen.

Dass hiermit gleichzeitig auch Beiträge zur Lösung aktueller und zukünftiger Umweltprobleme geleistet werden, darf als zusätzlicher, motivieren- der Faktor gewertet werden, wird aber voraussichtlich alleine als Argument nicht die not-wendige Wirkung in Unternehmen entfalten.

Es ist notwendig, die Umweltwirkungen in möglichst effizienter und gleichzeitig verlässl-i cher Weise für Unternehmen erfassbar und bewertbar zu machen. Wichtige Richtlinien stellen dabei die international und national formulierten Ziele für eine nachhaltige Ent-wicklung sowie die damit verbundenen Nachhaltigkeitsstrategien, Umweltpläne und ins-bondere die damit verbundenen Normen, Standards und Initiativen dar. In der Literatur werden zahlreiche Verfahren zur Bewertung der lieferantenbezogenen Umweltwirkungen diskutiert. Es werden neben dem Einsatz von Ökobilanzen nach DIN EN ISO 14040 ff., die aufgrund der notwendigen detaillierten Datenermittlung mit hohem Aufwand verbunden

76 Total Cost of Ownership ist ein Ansatz zur Vollkostenbetrachtung eines Produkts oder einer Leistung über den gesamten Produktlebenszyklus hinweg.
und zudem auf eine vollständige Bewertung von produktsystembezogenen Umweltwirkungen ausgerichtet sind, folgende Ansätze erörtert. Hierbei liefert insbesondere Beucker eine detaillierte Übersicht, auf der die folgenden Zusammenfassungen im Wesentlichen beruhen:

- Life Cycle Review
- Matrix Approach
- Vereinfachte Ökobilanz
- MIPS-Konzept
- Ökoeffizienzanalyse
- Life Cycle Costing
- Stoffstromanalyse

Die vereinfachte Ökobilanz, Simplified Life Cycle Assessment (LCA), stellt im Vergleich zum klassischen LCA ein reduziertes Ökobilanzierungsverfahren dar, das zwar im Ablauf einer vollständigen Ökobilanz grundsätzlich folgt, durch den Einsatz vereinfachter Sachbilanzen und Wirkungsabschätzungen den Aufwand aber erheblich verringert. Es existiert eine Reihe von Ansätzen für vereinfachte Ökobilanzen.

Das Konzept Materialinput pro Serviceeinheit (MIPS) wurde vom Wuppertal Institut für Klima, Umwelt, Energie entwickelt. Es stellt ein inputbezogenes System für die Erfassung und Bewertung von Stoffströmen und Umweltwirkungen dar und versteht sich als eine vorsorgeorientierte Ergänzung zu traditionellen ökologischen Bewertungsmethoden.

78 S. Beucker, S. (2005), S. 57 ff.
79 Schaltegger und Wagner definieren Umweltleistung wie folgt: „Environmental Performance is the total of a firm’s behaviour towards natural environment (i.e. level of total resource consumption and emissions)”; Vgl. Wagner, M. / Schaltegger, S. (2005).
80 LCA: Life Cycle Assessment.
CO₂ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

stellt somit ein spezifisches Bewertungsverhältnis aus dem Produkt- bzw. Dienstleistungswert und dem bewirkten Umwelteinfluss dar.

4.3 Einschätzung der bestehenden Methoden

Für die Erfassung und Bewertung von Umweltwirkungen im Unternehmen sind Ansätze vorhanden, die auch die von Lieferanten und der dazugehörigen Lieferkette ausgehenden Umweltwirkungen umfassen.

Um Umweltwirkungen bestimmen, bewerten und so als Wettbewerbsfaktor instrumentalisieren zu können, sollte ein möglichst vollständiger Ansatz gewählt werden. Empfehlenswert hierfür erscheint ein Ansatz, der die unterschiedlichen Prozesse bei Lieferanten wie Produktion, Lagerung, Umschlag, Transport und Beschaffung berücksichtigt. Nur so kann ein realistisches Bild über die von Lieferanten verursachten Umweltwirkungen entstehen.

Ger, da man in höherem Maße auf die Angaben von Lieferanten und Kunden bzw. auf Abschätzungen angewiesen ist.84

Um den Aufwand möglichst überschaubar zu halten, ist ein ggf. branchenweit standardisiertes Vorgehen zur Ermittlung der Umweltwirkungen über die Supply Chain hinweg hilfreich. Im Optimalfall würde so nach einem gemeinschaftlich vereinbarten Vorgehen im eigenen Unternehmen gemessen werden. Die so ermittelten Daten würden auch vom vorgelagerten Unternehmen eingefordert und an die nachgelagerten Unternehmen geliefert werden. So wären Daten von Lieferanten und deren Lieferanten in verlässlicher, vergleichbarer und verwertbarer Form vorhanden und könnten entsprechend den Flüssen von Material, Werten und Daten entlang der Kette weitergegeben werden. Einen ersten Ansatz dazu beinhaltet die EN 16258.

5 Herleitung einer Basisformel zur Berechnung von Emissionen in der Lieferkette

5.1 Grundlegende Ansätze zur Berechnung

nung über einen Faktor als CO2-Äquivalent mit eingehen, wobei hier unterschiedliche Vorgaben existieren. Die in Kapitel 3 vorgestellten Normen und Standards beinhalten hierzu Ansätze mit unterschiedlichen Detaillierungs- und Freiheitsgraden.

Zu unterscheiden ist dabei die Grenze der Betrachtung. Hier werden die Tank-to-Wheel- und die Well-to-Wheel-Betrachtung unterschieden. Bei der Tank-to-Wheel-Variante ist lediglich der direkt durch eine Aktivität verursachte Effekt berücksichtigt – also bspw. Energieverbrauch und Emissionen, die durch die Verbrennung eines Tankinhalts auf einer zurückgelegten Strecke (D) verursacht wurden.

Um eine vollständigere Sicht zu erhalten, ist zusätzlich jedoch auch die WTW-Betrachtung notwendig. In dieser sollen die Effekte ab der Erzeugung der Nutzenergie mit einbezogen werden.

Erweitert ist die Übersicht noch um die Basiswerte ohne genauere Beschreibung, da die o. g. Unterscheidung in manchen Vorgaben nicht verwendet wird.

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_D</td>
<td>Verbrauch an nutzbarer Energie für eine zurückgelegte Strecke</td>
<td>J bzw. MJ</td>
</tr>
<tr>
<td>E_T</td>
<td>Tank-to-Wheel-Energieverbrauch</td>
<td>J bzw. MJ</td>
</tr>
<tr>
<td>E_W</td>
<td>Well-to-Wheel-Energieverbrauch</td>
<td>J bzw. MJ</td>
</tr>
<tr>
<td>G_D</td>
<td>Treibhausgasemissionen als CO2-Equivalent auf einer zurückgelegten Strecke</td>
<td>kg</td>
</tr>
<tr>
<td>G_T</td>
<td>Tank-to-Wheel-THG-Emissionen</td>
<td>kg</td>
</tr>
<tr>
<td>G_W</td>
<td>Well-to-Wheel-THG-Emissionen</td>
<td>kg</td>
</tr>
<tr>
<td>D</td>
<td>zurückgelegte Strecke</td>
<td>km</td>
</tr>
<tr>
<td>D_Teil</td>
<td>zurückgelegte Strecke in einem Teilabschnitt</td>
<td>km</td>
</tr>
</tbody>
</table>

Unterschiedliche Ansätze zur Erhebung von CO2-Emissionen

<table>
<thead>
<tr>
<th>CO2-Emissionen von mobilen Quellen / Fahrzeugen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbrauchbasierter Ansatz (fuel-based)</td>
<td>Entfernungsbasierter Ansatz (distance-based)</td>
</tr>
</tbody>
</table>

Formel 1 und Formel 2

aKV bekannt oder D und dkV bekannt; exaktere Daten als bei entfernungsbasierten Ansatz

Strecke (D) bekannt, jedoch dkV nicht zur Verfügung

Formel 3

Aktivitätsbasierter Ansatz zur Errechnung von Scope 3 Emissionen

Formel 4

Transportierte Masse und Lagertage bekannt

Emissionen laut EU-Richtlinie 2004/156/EG

Formel 5

Emissionen laut IPCC-Referenzverfahren

Formel 6

Tabelle 4: Übersicht unterschiedlicher Ansätze zur Erhebung von CO2-Emissionen

CO2-Emissionen von mobilen Quellen / Fahrzeugen

Für die Berechnung von CO2-Emissionen von mobilen Quellen bzw. Fahrzeugen, die beim Transport von Gütern oder auch Personen eingesetzt werden, existieren im Grundsatz zwei mögliche Ansätze92:

- Der verbrauchsbasierte Ansatz (fuel-based)
- Der entfernungsbasierte Ansatz (distance-based)

Die Berechnung von CO2-Emissionen durch die Verbrennung eines Kraftstoffes wie Diesel ist durch Umrechnungsfaktoren (F_{CO2}) möglich. Darüber lassen sich die Emissionen von Kohlendioxid (G_{2}) vom Energieverbrauch (E_{0}) ableiten.93 Wenn der absolute Kraftstoffverbrauch (aKV) für eine Strecke, ein Fahrzeug oder ein Unternehmen, gemäß Norm einem sog. Vehicle Operation System (VOS, vgl. EN 16258) oder die zurückgelegte Strecke (D) zusammen mit dem durchschnittlichen Kraftstoffverbrauch (dKV) bekannt sind, kann der fuel-based-Ansatz angewendet werden.

Der verbrauchsbasierte Ansatz und der entfernungsbasierte Ansatz benutzen dieselben Emissionsfaktoren (EF) für die Kraftstoffarten. Der Unterschied besteht darin, dass der verbrauchsbasierte Ansatz exaktere Daten hinsichtlich des dKV verwendet. Für den aKV ergibt sich somit folgende Formel:

\[aKV = D \times dKV \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(aKV)</td>
<td>absoluter Kraftstoffverbrauch</td>
<td>l</td>
</tr>
<tr>
<td>(dKV)</td>
<td>durchschnittlicher Kraftstoffverbrauch</td>
<td>l/km</td>
</tr>
</tbody>
</table>

Formel 1: absoluter Kraftstoffverbrauch

Die notwendigen Daten für den entfernungsbasierten Ansatz sind bspw. Kilometerzählern oder anderen Aufzeichnungen der Unternehmensfahrzeugflotte zu entnehmen.\(^{94}\)

Die \(CO_2\)-Emissionen hängen vom Heizwert (\(H\)) des Kraftstoffes ab, dem Anteil des in der Verbrennung oxidierenden Kohlenstoffs (üblicherweise zwischen 99% und 100%, daher werden i. d. R. vereinfachend 100% angenommen) und dem Kohlenstoffanteil im Kraftstoff.

Diesen Zusammenhang drückt *Formel 2* aus:

\[GD = aKV \times H \times EF \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>Heizwert</td>
<td>l</td>
</tr>
<tr>
<td>(EF)</td>
<td>Emissionsfaktor abhängig vom Treibstoff</td>
<td>Diesel: kg/l, Schweröl: kg/kg, Bahnstrom: kg/kWh</td>
</tr>
</tbody>
</table>

Formel 2: Emissionen berechnet über Kraftstoffverbrauch

Der entfernungsbasierte Ansatz wird angewandt, wenn die zurückgelegte Strecke bekannt ist, aber der \(dKV\) nicht zur Verfügung steht. In diesem Fall werden distanzabhängige EFs in Tonnenkilometer (tkm), Personenkilometer (pkm) oder Flugkilometer (fkm) für die Berechnung der \(CO_2\)-Emissionen benötigt.

Dadurch ergibt sich für die Berechnung der Emissionen über den entfernungsbasierten Ansatz der in *Formel 3* dargestellte Zusammenhang:

\[GD = D \times EFD \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EFD)</td>
<td>Emissionsfaktor abhängig von Strecke bzw. Bezugsgröße</td>
<td>tkm, pkm, oder fkm</td>
</tr>
</tbody>
</table>

Formel 3: Emissionen über den entfernungsbasierten Ansatz

\(^{94}\) S. DSLV (2013), S.33, S.38, S.43 und S.52.
Aktivitätsbasieter Ansatz zur Errechnung von Scope-3-Emissionen

Eine weitere Methode für die Berechnung von CO₂-Emissionen aus dem Gütertransport enthält das GHG-Protokoll für Scope-3-Emissionen. Es handelt sich dabei um den sog. Aktivitäten- oder Activity-based-Ansatz, welcher Emissionsfaktoren benutzt, die auf zuvor ermittelten Güterverkehrsdaten basieren (d.h. g CO₂/tkm).

\[G_0 = m \times D \times EF_0 + G_L \]

wobei

\[G_L = d_{Lager} \times EF \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>transportierte Masse</td>
<td>kg</td>
</tr>
<tr>
<td>G_L</td>
<td>durch Lagertage verursachte THG-Emissionen</td>
<td>kg</td>
</tr>
<tr>
<td>d_{Lager}</td>
<td>Lagertage</td>
<td>d</td>
</tr>
</tbody>
</table>

Formel 4: Emissionen nach dem GHG-Protokoll

Emissionen laut EU-Richtlinie 2004/156/EG

Die Aktivitätsdaten beruhen auf dem Brennstoffverbrauch. Die eingesetzten Brennstoffmengen werden als Aktivitätsdaten dargestellt, der Emissionsfaktor als CO₂- oder als Produktionsrate, ausgedrückt in t oder m³. Der Emissionsfaktor wird mit den Einheiten tCO₂/t oder tCO₂/m³ beschrieben. Dem im Eingangsmaterial enthaltenen Kohlenstoff, der während des Prozesses nicht in CO₂ umgewandelt wird, wird im Oxidationsfaktor Rechnung getragen, der als Bruch dargestellt wird. Ist die Umwandlung bereits im Emissionsfaktor berücksichtigt, so wird kein zusätzlicher Oxidationsfaktor verwendet. Die Menge des verwendeten Eingangsmaterials wird als Masse in Tonnen (t) oder als Volumen in Kubikmeter (m³) eingesetzt. Daraus ergibt sich die Formel 5.

\[G_0 = A \times EF \times OF \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>spezifische Aktivitätsdaten</td>
<td>Mischeinheiten noch zu bereinigen bei Bedarf (t oder m³)</td>
</tr>
<tr>
<td>OF</td>
<td>Oxidationsfaktor</td>
<td>%</td>
</tr>
<tr>
<td>EF</td>
<td>Emissionsfaktor</td>
<td>tCO₂ pro TJ oder pro m³</td>
</tr>
</tbody>
</table>

Formel 5: Berechnung nach EU-Richtlinie 2004/156/EG

Der Emissionsfaktor wird in Terajoule (TJ) ausgedrückt. Wenn Energie verbraucht wird, oxidiert nicht der gesamte im Brennstoff enthaltene Kohlenstoff zu CO₂. Eine unvollständige Oxidation entsteht durch einen unzureichenden Verbrennungsprozess, d. h. ein Teil des Kohlenstoffs wird nicht verbrannt oder oxidiert zu Ruß oder Asche.

Emissionen laut IPCC-Referenzverfahren

Eine weitere Methode zur Kalkulation von CO₂-Emissionen ist das Referenzverfahren des IPCC. Das Referenzverfahren folgt fünf Schritten:

1. Schätzung des tatsächlichen Brennstoffkonsums
2. Umrechnung in eine gemeinsame Energieeinheit (z. B. TJ)
3. Multiplikation mit dem Kraftstoffgehalt, um die gesamte Kohlenstoffmenge zu berechnen
4. Berechnung des ausgeschlossenen Kohlenstoffs
5. Korrektur um den nicht-oxidierenden Kohlenstoff und Umrechnung in CO₂-Emissionen
Bei Schritt 5 nimmt das Verfahren einen Oxidationsfaktor von 100 % an. Somit gilt hierbei Formel 6:\n
\[G_D = \Sigma ((K_{\text{verbr},i} \cdot U_K \cdot C_K) \cdot 10^{-3} - C_{\text{excl},i} \cdot \text{OF} \cdot 44/12) \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{\text{verbr}})</td>
<td>tatsächlich verbrauchter Kraftstoff für alle einbezogenen Kraftstoffarten ((i))</td>
<td>l</td>
</tr>
<tr>
<td>(U_K)</td>
<td>Umrechnungsfaktor je Kraftstoff</td>
<td>./</td>
</tr>
<tr>
<td>(C_K)</td>
<td>Kohlenstoffgehalt je Kraftstoff</td>
<td>./</td>
</tr>
<tr>
<td>(C_{\text{excl}})</td>
<td>ausgeschlossener Kohlenstoff</td>
<td>./</td>
</tr>
<tr>
<td>(\text{OF})</td>
<td>Oxidationsfaktor</td>
<td>Bruchteil oder %</td>
</tr>
<tr>
<td>44/12</td>
<td>Faktor zur Beschreibung der molaren Verhältnisse</td>
<td>./</td>
</tr>
<tr>
<td>(i)</td>
<td>Zähllvariable</td>
<td>./</td>
</tr>
</tbody>
</table>

Formel 6: Berechnung der Emissionen nach IPCC

5.2 Zusammenführung unterschiedlicher Berechnungsansätze

Die Norm EN 16258 gliedert den verbrauchs­basierten Ansatz in drei unterschiedliche Fälle. Sollten alle diese Fälle nicht anwendbar sein, so sieht die Norm noch eine vierte Variante vor.

Für diese Fälle eignet sich die Anwendung des entfernungsbasierten Ansatzes. Dieser benötigt neben dem Gewicht der Sendung, Angaben zu zurückgelegten Entfernungen oder Angaben zu den Tonnenkilometern. In dieser Methode ist es zulässig, mit Vorgabewerten, die aus nach Möglichkeit öffentlich zugänglichen Datenbanken gespeist werden, zu arbeiten. Diese Größen werden dann mit Verbrauchs- und Emissionsfaktoren pro Fahrzeugkilometer oder Tonnenkilometer verknüpft, um zu ermitteln, wie viel Energie verbraucht

97 S. auch Abschnitt 3.1.4.
98 Z. B. den Flottendurchschnitt von 40t-Lkw, wenn es sich in Wirklichkeit um Verteilerfahrten handelt.
und welche Menge an Treibhausgasen erzeugt wurden. Die benötigten Faktoren können aus offiziellen Datenbanken wie dem Handbuch für Emissionsfaktoren des Straßenverkehrs (HBEFA), TREMOD, TREMOVE oder aus frei zugänglichen Rechentools entnommen werden.99

Somit lässt EN 16258 vier Ansätze zur Bestimmung der Verbrauchsdaten zu100:

1. Verwendung spezifischer Messwerte für den konkreten Transport
2. Verwendung von fahrzeug- oder routentypischen Kennwerten
3. Verwendung von Flottendurchschnittswerten im VOS
4. Verwendung von feststehenden Vorgabewerten aus Datenbanken („Default-Werte“)

Zudem müssen gemäß EN 16258 bilanzpflichtige Unternehmen sowohl die Tank-to-Wheel-Energieverbräuche und -Treibhausgasemissionen als auch die Well-to-Wheel-Energieverbräuche und -Treibhausgasemissionen für die Transporte berechnen (s. auch Kapitel 5.1). Abbildung 5 stellt die verschiedenen Möglichkeiten und deren Zusammenhänge schematisch dar.

Abbildung 5: Ansätze zur Bestimmung von Verbrauchsdaten101

Die Zuordnung des konkreten Verbrauchs je Lieferung bzw. Sendung benötigt eine Alloka tion, die dem realen Sachverhalt und damit der Verursachung innerhalb einer Transport tä tigkeit gerecht wird. Hierfür bietet die Norm ebenfalls Berechnungsverfahren, die bspw. über Paletten als Teil der Mengenangabe, Ladung zzgl. Wechselbehälter bei Bahnbeförde rung oder bei Transport mittels einer Fähre über den Lkw inkl. der Fracht berechnet werden.102

100 Wobei die ersten drei Fälle dem verbrauchsbasierten Ansatz und der vierte Fall dem entfernungsbasierten Ansatz entspre chen.
101 Eigene Darstellung nach DIN EN 16528 und DSLV (2012), S. 28; Wobei die ersten drei Fälle dem verbrauchsba sierten Ansatz und der vierte Fall dem entfernungsbasierten Ansatz entsprechen.
102 S. DIN EN 16258; S.17 f.
Zur kompletten Berechnung aller relevanten Kennwerte für eine Ladung sieht die Norm zudem vor, zunächst alle Teilstrecken zu ermitteln, für diese die jeweiligen Verbrauchs- und Emissionswerte zu errechnen und darüber die Summe zu bilden.

Um für den Verwender der Daten deren Qualität, Herkunft und Verlässlichkeit einschätzbar zu machen, muss gemäß Norm neben den Ergebnissen auch stets angegeben werden, welche Größen gemessen und welche aus Datenbanken bezogen wurden. Unabhängig von der verwendeten Datenquelle müssen die gemessenen oder berechneten Energieverbräuche zur besseren Vergleichbarkeit in die einheitliche Energieeinheit Megajoule (MJ) umgerechnet werden. Für beide Umrechnungsschritte\(^{103}\) bietet die Norm für alle Energieträger feste Umrechnungsfaktoren an oder beschreibt die Methode, wie diese Faktoren ermittelt werden müssen.\(^ {104}\)

Darüber hinaus muss kenntlich gemacht werden, aus welchen Quellen die Kenngrößen Entfernung, Auslastung, Leerfahrtenanteil oder Energieverbrauch stammen. Die Norm gibt zudem an, in welcher Form bei Transportketten die verwendeten Quellen und Daten zu kommunizieren sind.

5.3 Ableitung einer Basisformel

Im Allgemeinen lassen sich Emissionen durch folgende Basisformel\(^{105}\) mithilfe von Umrechnungsfaktoren (FCO2) berechnen:

\[
\begin{align*}
\text{für eine (Teil-)Strecke:} & \quad G_{T,D} = \text{FCO2} \times \text{EVT},D \\
\text{für die gesamte Strecke:} & \quad G_{\text{ges}} = \text{FCO2} \times \sum (\text{EVT},D,i)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_{T,D})</td>
<td>CO2-Emissionen TTW auf Teilstrecke</td>
<td>kg</td>
</tr>
<tr>
<td>(G_{\text{ges}})</td>
<td>CO2-Emissionen TTW auf Gesamtstrecke</td>
<td>kg</td>
</tr>
<tr>
<td>(\text{EVT},D)</td>
<td>TTW-Energieverbrauch durch Kraftstoff auf Teilstrecke</td>
<td>l</td>
</tr>
<tr>
<td>(\text{FCO2})</td>
<td>CO2-Umrechnungsfaktor für Diesel</td>
<td>kg CO2/l</td>
</tr>
<tr>
<td>i</td>
<td>Zählvariable für Teilstrecken</td>
<td>./.</td>
</tr>
</tbody>
</table>

Formel 7: Basisformel bei bekanntem Energieverbrauch

Um eine Vergleichbarkeit von Lieferketten oder auch Teilstrecken zu erreichen, ist eine Betrachtung der CO2-Emissionen je transportierter Menge Gut und je transportierter Ent-

\(^{103}\) Standardisierung der Energieverbräuche, 2. Berechnung der Treibhausgasemissionen.
\(^{104}\) Vgl. DSLV (2012), S. 29.
CO₂ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

fernunheit sinnvoll. Diese Emissionen werden wenn möglich in Gramm CO₂ je trans-
portierter Tonne und Kilometer angegeben (g CO₂/tkm). Hier lässt sich die Formel direkt
übertragen, um die CO₂-Emissionen zu bestimmen. Es wird jedoch die Annahme getroffen,
dass die tatsächlichen Energieverbräuche entlang der Lieferkette nicht vorliegen. Sobald
der Standardisierungs- und Automatisierungsprozess weiter fortgeschritten ist, kann auch
der tatsächliche Energieverbrauch in die Berechnung miteinbezogen werden. Stand heute
würde dies aber aufgrund der arbeitsintensiven Ermittlung der Daten noch mit zu hohen
Kosten verbunden sein. Daher lässt sich das Vorgehen erst nach Generierung erster Erfah-
rungswerte mit der Berechnungsmethodik und steigendem Standardisierungsgrad emp-
führen.

Ein Vorgehen über mehrere Entwicklungsstufen kann in diesem Fall zunächst Abhilfe
schaffen, solange eine sukzessive Weiterentwicklung der Lösung bei fortschreitendem
Kenntnisstand erfolgt. So kann zunächst noch mit Durchschnittsdaten oder eigenen Be-
rechnungen aus bestehenden Daten gearbeitet werden, bis in einem fortgeschrittenen
Stadium ggf. auch reale Daten durch eine Kopplung an Konzepte wie das Tracking und
Tracing oder an Transportmanagementsysteme vorliegen.

Um eine Berechnung ohne Vorliegen tatsächlicher Energieverbräuche durchzuführen,
muss die Formel zunächst um den Aspekt der unterschiedlichen Einflüsse der Verkehrsträ-
ger erweitert werden. Folgende Formel drückt aus, wie viel CO₂ durch den Transport eines
bestimmten Gutes mit dem Lkw, der Bahn, dem Schiff oder dem Flugzeug von einem Aus-
gangs- zu einem Zielort entsteht.

\[G_T = F_{CO2} \times \text{EVT, spez} \times m \times D \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVₜ,spez</td>
<td>spezifischer TTW-Energieverbrauch</td>
<td>l/tkm</td>
</tr>
<tr>
<td>m</td>
<td>beförderte Masse des Transportguts</td>
<td>kg</td>
</tr>
</tbody>
</table>

Formel 8: Verkehrsmittelspezifische Emissionen

Für diese und die weiteren Formeln beschränkt sich die Beschreibung auf die Berechnung
einer Teilstrecke. Die Summenbildung für Gesamtstrecken erfolgt gemäß dem Schema in
Formel 7.

In den beschriebenen Fällen können die CO₂-Emissionen ebenfalls über die spezifischen
Energieverbräuche der Fahrzeuge bestimmt werden. Um diese Formel anwenden zu kön-
nen, ist es zunächst notwendig, die sog. spezifischen Tank-to-Wheel-Energieverbräuche
(EVTₜ,spez) für den jeweiligen Verkehrsträger zu errechnen.

Um den Anforderungen der EN 16258 gerecht zu werden, sollen in der CO₂-Berechnung
sowohl die direkten (TTW) als auch die indirekten (WTW) Emissionen als Ergebnis ausge-
wiesen werden. Unter direkten Emissionen sind, wie bereits erwähnt, diejenigen zu ver-
stehen, die beim eigentlichen Transport bspw. durch die Verbrennung von fossilen Kraft-
stoffen erzeugt werden. Unter die indirekten Emissionen fallen die Emissionen, die bei der
Herstellung der benötigten Energie bzw. des Energieträgers sowie dessen Transport ent-
standen sind. Der Einbezug der Emissionen der Herstellung ist notwendig, um ein voll-
ständigeres Bild über die Effekte des jeweiligen Transports zu erhalten. So fallen schon bei
der Herstellung von Kraftstoffen wie Diesel oder Benzin Emissionen bei der Förderung des
Rohöls, bei der Raffinierung sowie bei der Verteilung bis hin zur Tankstelle an.

Gerade bei Vergleichen zwischen den Verkehrsmitteln Diesel-Lkw und Eisenbahn oder bei der Berechnung von Transportketten, bei denen elektrisch betriebene Verkehrsmittel mit betrachtet werden, ist eine Betrachtung der indirekten Emissionen unabdingbar. Um also eine korrekte Aussage bzgl. der echten Emissionen treffen zu können, muss grundsätzlich der Well-to-Wheel-Ansatz verwendet werden, was auch in der Norm gefordert wird. Für beide Fälle liegen fest definierte Umrechnungsfaktoren $F_{T,\text{CO}_2} (\text{TTW})$ und $F_{W,\text{CO}_2} (\text{WTW})$ vor.

Des Weiteren müssen weitere THG-Emissionen einbezogen werden. Bei einem dieselgetriebenen Lkw erhöhen sich durch die Berücksichtigung von Methan (CH_4) und Distickstoffmonoxid (N_2O) die direkten, verbrennungsbedingten Treibhausgasemissionen, gemessen in CO_2-Äquivalenten, um rund 1,1%.

Der THG-Umrechnungsfaktor ($F_{W,\text{THG}}$) einschließlich der Emissionen durch die Produktion beträgt dann 3,01 kg pro Liter und ist damit rund zwei Prozent höher als der CO_2-Wert (F_{W,CO_2}) mit 2,95 kg CO_2 je Liter Diesel. Normen und Standards wie EN 16258, ISO 14064-1 und das GHG-Protokoll schreiben vor, dass diese Emissionen zur Ermittlung der Klimafolgen der Transporte in Form von CO_2-Äquivalenten berücksichtigt werden müssen.

Um CO_2-Emissionen und CO_2-äquivalente THG-Emissionen in einer einer WTW-Betrachtung zu erheben, ergibt sich folgende Variante der Formel 8 für die Well-to-Wheel-Betrachtung:

$$G_W = F_{\text{CO}_2} \times EV_{W,\text{spez}} \times m \times D$$

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_W</td>
<td>Well-to-Wheel-THG-Ausstoß</td>
<td>kg</td>
</tr>
<tr>
<td>$EV_{W,\text{spez}}$</td>
<td>spezifischer WTW-Energieverbrauch</td>
<td>l/tkm</td>
</tr>
<tr>
<td>m</td>
<td>beförderte Masse des Transportguts</td>
<td>kg</td>
</tr>
</tbody>
</table>

Formel 9: WTW-Variante der Basisformel

Werden verschiedene Verkehrsmittel in einer Lieferkette eingesetzt oder sollen verschiedene Verkehrsmittel verglichen werden, sollten idealerweise die Energieverbräuche in einer gemeinsamen physikalischen Einheit vorliegen. EN 16258 schreibt grundsätzlich eine Umrechnung in MJ vor.

Mithilfe dieser Formeln ist es möglich, ein Berechnungskonzept aufzubauen, welches ein ausgeglichenes Kosten-Nutzen-Verhältnis und Regelkonformität erlaubt. Um jedoch solch

ein Konzept zu etablieren, sollten zunächst die Einflussfaktoren für die Berechnung bewusst identifiziert werden, um diesen bei der Konzeption eines Berechnungskonzeptes ausreichend Rechnung zu tragen. Im folgenden Abschnitt werden Einflussfaktoren dargestellt.

5.4 Faktoren mit Einfluss auf die Berechnung

Um die Basisformeln anwenden zu können, müssen zunächst die spezifischen Energieverbräuche \((\text{EV}_{\text{spec}}) \) für die entlang der Lieferkette eingesetzten Verkehrsträger errechnet werden. Hierfür sind die unterschiedlichen Einflussfaktoren der verschiedenen Verkehrsträger zu berücksichtigen.

Für den intermodalen Vergleich der Verkehrsträger werden in der Literatur verschiedene Bezugsgrößen verwendet. Grundlage für diese Vergleiche sind Annahmen zu technischen Charakteristika der Verkehrsträger und spezifische Rahmenbedingungen hinsichtlich der Verkehrssituation.\(^{108}\)

Die Berechnung und die damit einhergehenden Einflussfaktoren lassen sich in folgende Stufen einteilen:

- **Umweltindikator Verkehrsträger**: Abbildung technischer und verkehrsspezifischer Funktionen für Verbrauch und Emission

- **Umweltindikator Transporteffizienz**: Berücksichtigung allgemeiner logistischer Aspekte wie durchschnittliche Auslastungen sowie Leerfahrten, welche in der EN 16258 explizit vorgeschlagen werden

- **Umweltauswirkungen spezifischer Transportdienstleitungen**: Berücksichtigung spezieller logistischer Aspekte für ausgewählte Strecken/Lieferketten (Distanz Vor-, Haupt- und Nachlauf)

Abbildung 6: Berechnungsstufen, Bezugsgrößen und wesentliche Einflussfaktoren\(^ {109}\)

\(^{108}\) Vgl. VDA (2011), S. 17.

\(^{109}\) VDA (2011), S. 17.

Unter Einbezug der Einflussfaktoren lassen sich die spezifischen Energieverbräuche (EV$_{spez}$) mithilfe der Formeln je Verkehrsträger errechnen.

Um eine realistische Berechnung der Emissionen eines Transports zu ermöglichen, müssen die Merkmale der verwendeten Verkehrsträger und der Transporteffizienz sowie alle Teilstrecken eines Transports (Vor-, Haupt- und Nachlauf) mit in die Betrachtung einbezogen werden. Für eine Komplettbetrachtung einer Wertschöpfungskette sind hierbei notwendigerweise möglichst alle Lieferstufen miteinbeziehen. Dadurch werden neben den eigenverursachten Transporten zum Kunden und den Transporten der direkt vorgelagerten Lieferanten auch die Transporte der weiter vorgelagerten Stufen der Wertschöpfung (2nd-Tier-, 3rd-Tier-Lieferanten etc.) berücksichtigt.

Nur so kann der CO$_2$-Ausstoß sinnvoll als Steuergröße eingesetzt werden und damit zum Wettbewerbsfaktor in einer Industrie wie der Automobilindustrie werden.
6 Berechnungstools und Datenbanken

Bevor die aufgezeigten Formeln auf ein konkretes Berechnungsverfahren in der Wertschöpfungskette anwendbar sind, ist es nötig, bereits bestehende Lösungen und verfügbare Datenbanken zu analysieren. Ziel ist es aufzuzeigen, welche Lösungen und welche Möglichkeiten zur Nutzbarmachung von Datenbanken bereits zur Verfügung stehen, um über eine möglichst übersichtliche Basis für eine praktikable Anwendung zu verfügen.

6.1 Ausgewählte Berechnungstools und Software

Ausgehend von den bereits aufgezeigten Normen, Standards und Richtlinien existieren zahlreiche Softwarelösungen und CO₂-Rechner, die ihren Fokus auf unterschiedliche Aspekte legen.

Die folgende Aufstellung beschreibt, welche Softwarelösungen existieren und inwieweit sie Teilbereiche des Themengebiets bereits unterstützen. Ebenso werden die Möglichkeiten der Adaption der jeweiligen Software aufgezeigt. Des Weiteren sind die Akzeptanz in der Lieferkette und die Möglichkeit der automatisierten Datenübertragung relevant, wodurch sich ein Hinweis auf die Integration der Tools oder der Software in die bestehende IT-Infrastruktur ergibt.

Im Folgenden werden exemplarisch einige bereits verfügbare Tools vorgestellt und miteinander verglichen, um einen Einblick in Funktion und Vielseitigkeit zu erhalten.

![Abbildung 7: Übersicht ausgewählter Berechnungstools](image)

EcoTransIT

Ein Tool zur Berechnung von CO₂-Emissionen ist das Ecological Transport Information Tool (EcoTransIT), welches vom Institut für Energie- und Umweltforschung (IFEU), vom Umweltbundesamt sowie von weiteren Partnern entwickelt wurde.

nehmen Rail Management Consultants und von verschiedenen europäischen Bahngesellschaften entwickelt wurde.111

Bei den Berechnungen werden sowohl etwaige Umladungen an Grenzübergängen als auch Umladungen beim kombinierten Verkehr berücksichtigt.

Das Raumgewicht der transportierten Ladung ermöglicht genaue Angaben zur Größe der Züge. Die Art der Verladestationen (Bahnhof, Hafen, Flughafen, Plattformen für das Behandeln von Lkw) bietet eine realitätsnahe Darstellung des Gütertransports.

EcoTransIT vergleicht den Energieverbrauch und die Emissionen für Güter, die per Eisenbahn, Lkw, Schiff und Flugzeug transportiert werden. Berücksichtigt werden auch intermodale Transportdienste und die unterschiedlichen technischen Standards der Fahrzeuge.

Das IFEU in Heidelberg und INFRAS Bern als wissenschaftliche Partner von EcoTransIT arbeiten schon seit Jahren an der Fortentwicklung von Methoden zur Emissionsberechnung von Transporten. IFEU entwickelte das TREMOD Transport Emission Model, das die Grundlage für die Emissions- und Klimaberichterstattung Deutschlands darstellt.112

Das Unternehmen IVE aus Hannover hat die methodische Basis dafür geschaffen, dass mit EcoTransIT World weltweit Routings für Lkw, Bahn, Schiff und Flugzeug möglich sind. Die Verkehrsnetze werden hierfür ständig aktualisiert. Zudem betreut IVE die Entwicklung und technische Implementierung der EcoTransIT-Software und der Business Solution.113 Die Ergebnisse der einzelnen Berechnungen werden in Form von Diagrammen präsentiert. Darin lassen sich Energieverbrauch und Emissionen der verschiedenen Umweltenschadstoffe miteinander vergleichen, während zwischen den ausgewählten Verkehrsmitteln unterschieden wird. So kann der Benutzer die Routen und das Verkehrsmittel mit den geringsten ökologischen Auswirkungen auswählen. Aufgrund der wissenschaftlichen Basis der

112 Zu TREMBO s. Kapitel 6.2.
Daten und der beteiligten unabhängigen Partner führen die Berechnungen von EcoTransIT bei richtiger Anwendung zu zuverlässigen Ergebnissen, die sich in der Umweltbilanz der Unternehmen in verlässlicher Weise niederschlagen.

GaBi

Die ursprünglich vom Unternehmen PEInternational und mittlerweile vom Unternehmen Thinkstep entwickelte Software GaBi ermöglicht es Unternehmen, Ökobilanzen zu erstellen und damit sowohl nachhaltigere als auch preislich wettbewerbsfähigere Produkte herzustellen. Die Software GaBi unterstützt:

- Ökobilanzen / Life Cycle Assessment nach ISO 14040/44
- PCF / CO2-Fußabdruck (z. B. nach PAS 2050 / Scope 3)
- Design for Environment & Ecodesign
- Umweltproduktdeklarationen Ressourcen & Energie Effizienz
- Water Footprint

SoFi

SoFi Enterprise

SoFi Enterprise ist regelkonform mit den Umweltmanagement-Standards ISO 14001/50001 und EMAS sowie mit Arbeitssicherheitsbestimmungen. SoFi Enterprise ist eine Nachhaltigkeitsoftware für Unternehmen, die die Berichterstattung und das Performance Management in alle Geschäftsläufe und in die Lieferkette integrieren möchten. Mit einer flexiblen Kollaborationsplattform können Nachhaltigkeitskennzahlen über mehrere Stufen der Wertschöpfung hinweg gesteuert werden.

SoFi Enterprise verfügt über Funktionen für Performance-Auswertungen, Planung und Projektmanagement. Unter anderem kann SoFi Enterprise für das Aufstellen einer Klimabilanz genutzt werden. Analyse- und Reporting-Funktionen helfen dabei, eine Unterneh-

114 Vgl. EcoTransIT (2013b); PEInternational (2010).
mensklimastrategie zu implementieren. Die Software bietet eine integrierte Emissionsfaktorenbibliothek mit automatischer Aktualisierung und Klima-Performance-Benchmarks aus unterschiedlichen Branchen.

SoFi CDP Professional

SoFi CDP ist die professionelle Lösung für das Emissionsmanagement und die Berichterstattung für die Erstellung von Klimabilanzen. Hier stehen dem Nutzer verifizierte, Audit-sichere Daten zur Performance des Unternehmens zur Verfügung.

SoFi CDP liefert Tools für eine fundierte Kommunikation mit Mitarbeitern, Rating-Agenturen, Investoren und Kunden. Mit SoFi CDP können somit Einsparpotenziale hinsichtlich Treibhausgasemissionen und Energieverbrauch aufgedeckt werden.

LogEC

Mit dem vom Unternehmen INFONOVA in Kooperation mit Bearing Point entwickelten Logistics Emissions Calculator (LogEC) können CO₂-Emissionen gemessen und Maßnahmen zur Senkung von Umweltbelastungen geplant, evaluiert und gesteuert werden. Es lässt sich darstellen, auf welchen Strecken oder mit welcher Fracht die höchste Belastung entsteht und wo Maßnahmen zur Einsparung ansetzen sollten.

Der Erfolg von ergriffenen Maßnahmen lässt sich mit dem Tool nachverfolgen. Durch die Hinterlegung der logistischen Netze führender Dienstleister ist das Tool auch für Verlader nutzbar. Eine Simulation unterschiedlicher Szenarien, Einsparziele und zukünftiger Flottenverbräuche wird durch das Tool ebenfalls unterstützt.

Datenlücken können durch die Verwendung von offiziellen Standardwerten – z. B. dem Handbuch für Emissionen des Umweltbundesamtes – geschlossen werden. LogEC unterstützt die Berechnung von Emissionen durch Bahn, Schiff, Flugzeug und Lkw.¹¹⁸

PTV Map&Guide

Map&Guide ist eine Routenplanungssoftware der PTVGroup, mit der sich bei der Routenberechnung anfallende Emissionen ausweisen lassen. Abhängig von Fahrzeugkonfiguration, Leergewicht und Nutzlast sowie der Straßen- und Verkehrssituation (Steigungen, Gefälle, Straßentyp etc.) werden relevante Emissionen wie CO₂, Luftschadstoffe und Treibhausgase berechnet.

- Transportklasse
- Gewicht
- Kraftstoffart
- Emissionsklasse
- Lkw-Typ

Durch eine Dokumentationsfunktion können die Emissionswerte in der Routenzusammenfassung dargestellt werden. Eine separate Auswertung in der Wegeliste sowie Emissionsreports und routenbezogene Zertifikate für den Kunden in Anlehnung an die Norm EN 16258 sind hierbei enthalten.

NTMCalc – Basic Freight Calculator

Umberto

119 S. Kapitel 3.1.7.
121 NTMCalc (2013).
von Themen wie Kostenstrukturen, Ressourcenverbrauch und Umweltleistung. Die Berechnung erfolgt durch iterative Berechnungsverfahren, dynamische Modellierungen für die Berechnung von Kreisläufen, Szenario- und Periodenrechnungen.

Die Carbon-Footprint-Berechnungen werden nach PAS 2050, GHG-Protokoll oder zukünftig nach ISO 14067 durchgeführt. Es wird die gesamte Wertschöpfungskette mithilfe einer umfassenden Datenbasis betrachtet. Hierbei werden GWP-Werte der Datenbank ecoinvent verwendet.\(^\text{122}\)

Tabelle 5 enthält eine Übersicht der verschiedenen diskutierten Tools und Lösungen und stellt diese anhand wesentlicher Kriterien gegenüber.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datenbank</th>
<th>Transport</th>
<th>Produktion (Arbeitsmaschinen, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoTransIT World</td>
<td>Tremod / HBEFA / Moves / Daten der Organisationen: IMO, ICAO, EEA</td>
<td>X X X X X X</td>
<td>X</td>
</tr>
<tr>
<td>GaBi</td>
<td>Führende DB wie HBEFA, eigene Prozessdatenbank</td>
<td>X X X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>SoFi</td>
<td>Führende DB wie HBEFA, eigene Prozessdatenbank</td>
<td>X X X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>LogEC</td>
<td>HBEFA</td>
<td>X X X X X</td>
<td>X X X</td>
</tr>
<tr>
<td>PTV Map&Guide</td>
<td>NAVTEQ, DB lt. DIN 16258 & Dekret 2011-1336</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NTM</td>
<td>Artemis, HBEFA</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>Umberto</td>
<td>ecoinvent LCI, GaBi, EstiMol</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5: Gegenüberstellung von Software unterschiedlicher Anbieter und verschiedenen Verkehrsträgern

6.2 Datenbanken

\(^\text{122}\) Umberto (2013).

Etwa für Fahrzeugart, Auslastung und Längsneigung der Strecke oder Umwege können verschiedenste Durchschnittswerte oder exakte Werte verwendet werden. Da diese Parameter großen Einfluss auf die Ergebnisse haben, ist es hier besonders wichtig, eine einheitliche Lösung zu verwenden. Diese sollte einfach gestaltet sein und immer dieselben Durchschnittswerte zugrunde legen. In großen Unternehmen, wo die notwendige Datengrundlage vorhanden ist, erscheint eine exakte Berechnung der durch eigene Aktivitäten entstandenen Emissionen durchaus sinnvoll. Es muss allerdings stets durchgängig transparent sein, welche Parameter in welcher Form berücksichtigt werden. Sobald jedoch die eigenen Unternehmensgrenzen überschritten werden, kommen folgende Fragestellungen auf:

- Werden Emissionen von Zulieferern erfasst?
- Wie hoch ist die Qualität der Daten einzuschätzen?
- Sind die Messmethoden nachvollziehbar und Messparameter transparent sowie vergleichbar mit denen anderer Lieferanten?

Diese Fragestellungen und die dadurch auftretenden Messvarianzen können das gesamte Ergebnis verfälschen und lassen somit an deren Eignung als Steuergröße zweifeln.

HBEFA

Das Handbuch für Emissionsfaktoren des Straßenverkehrs (HBEFA) bietet Daten zu den Emissionen mehrerer Luftschadstoffe basierend auf Gramm pro Kilometer. Es werden Emissionen von Kohlenstoffmonoxid, Kohlenstoffdioxid, Kohlenwasserstoffen, Stickstoffoxiden und Partikel berücksichtigt. HBEFA bezieht sich nicht auf die konkrete Emissions-
CO₂ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

menge eines Anwendungsfalls, sondern führt die Emissionsfaktoren in Abhängigkeit von Fahrzeugkategorien, Emissionskategorien, Kraftstofftypen und Basisjahr auf.¹²⁴

TREMOD

¹²⁴ Vgl. HBEFA (2013).

- Erfüllung der nationalen und internationalen Berichtspflichten der Bundesregierung im Bereich Energie und Emissionen des Verkehrs
- Vorbereitung von politischen Entscheidungen (z. B. Abgasgesetzgebung, Fördermaßnahmen)
- Überprüfung der Wirksamkeit von Maßnahmen in Szenario-Betrachtungen
- Überprüfung von Minderungszielen, z. B. aufgrund von Verpflichtungen auf internationaler Ebene (NEC-Richtlinie, Kyoto-Protokoll)
- Datenbasis für Umweltkennzahlen des Verkehrs, z. B. für Ökobilanzen oder Umweltvergleiche. Konkret werden die TREMOD-Daten u. a. in Probas, Renewability, GEMIS, Umberto, UmweltMobilCheck, EcoPassenger und EcoTransIT verwendet.

GEMIS

Für alle Prozesse speichert GEMIS:

- Kenndaten zu Nutzungsgrad, Leistung, Auslastung, Lebensdauer
- Direkte Luftschadstoffemissionen (SO₂, NOx, Halogene, Staub, CO, NMVOC, H₂S, NH₃)
- Treibhausgasemissionen (CO₂, CH₄, N₂O, sowie SF₆ und FKW)
- Feste Reststoffe (Asche, Entschwefelungsprodukte, Klärschlamm, Produktionsabfall, Abraum)
- Flüssige Reststoffe (AOX, BSBS, CSB, N, P, anorganische Salze)
- Flächenbedarf

GEMIS kann zudem Kosten analysieren – die entsprechenden Kenndaten der Brenn- und Treibstoffe sowie der Energie- und Transportprozesse (Investitions- und Betriebskosten)

125 TREMOD (2013).
126 Vgl. GEMIS (2012).
sind in der Datenbasis ebenfalls enthalten. Zu GEMIS gibt es verschiedene Berichte und Datendokumentationen sowie Hilfestellungen. \(^{127}\) Das Modell mit Datenbasis gibt es kostenlos zum Download auf den Webseiten des Internationalen Instituts für Nachhaltigkeitsanalysen und -strategien (IINAS). \(^{128}\)

\(^{127}\) Vgl. IINAS (2015): Internationales Institut für Nachhaltigkeitsanalysen und -strategien, Informationen zu GEMIS.

\(^{128}\) Die Webseite des IINAS ist unter folgendem Link http://www.inas.org/about-de.html aufrufbar.
7 CO₂ als Wettbewerbsfaktor

Aus Sicht von Lieferanten entstehen dadurch mehrere Ansatzpunkte, die eigenverursachten bzw. -veranlassten Emissionen als Wettbewerbsfaktor aufzufassen. So haben sie nicht nur auf die eigene Produktion Einfluss, sondern auch auf die Auswahl geeigneter Produktionsstandorte und Logistikdienstleister. Gleichzeitig wird aber auch die Berechnung und Kommunikation der geforderten Werte nötig. So könnte ein Lieferant, der diese verlässlich, transparent und elektronisch weiterverwendbar mit den ansonsten üblichen Dokumenten und zudem ohne zusätzlichen Aufwand zu verursachen, mitliefern kann, bei seinen Kunden einen Wettbewerbsvorteil erlangen. Das deshalb, weil ansonsten die Ermitt-
lung oder – falls nicht möglich – Abschätzung der Emissionen Aufgabe des OEMs bzw. des Kunden bliebe. Dieser müsste in diesem Fall die Berechnung der CO₂-Werte selbst durchführen und auf eine möglichst verlässliche und gleichzeitig mit vertretbarem Aufwand einsetzbare Berechnungsmethode für die bisher angefallenen Transporte setzen.

Wie in Kapitel 4.1 dargestellt, bieten sich unterschiedliche Möglichkeiten, über die Wert schöpfungskette hinweg CO₂-Emissionen als Steuergröße einzusetzen. Ein Vorschlag, wie sich das in der Anwendung umsetzen lässt, wird in diesem Kapitel ausgeführt.

Zunächst müssen im Unternehmen die Grundsatzfragen zur Ausgestaltung der Steuergröße getroffen werden. Es muss also darüber entschieden werden, welche Methodik zur Erfassung und zur anschließenden Anwendung ausgewählt wird.

7.1 Berechnungsvorgehen in drei Schritten

Mithilfe der in Kapitel 5 aufgezeigten Basisformeln und gewonnenen Informationen über die unterschiedlichen Einflussfaktoren können Kenngrößen ermittelt werden. Es stellt sich zum einen die Frage, welche Informationen anhand der Kennzahlen abgeleitet werden können, zum anderen, wie sich diese später einsetzen lassen. Eine Möglichkeit, wie ein Berechnungskonzept für ausgewählte Kenngrößen ausgestaltet sein könnte, wird im Folgenden beschrieben.

Bei der Gestaltung eines Konzepts zur Berechnung und Bewertung von Emissionen der Lieferkette sind folgende Punkte zentral:

- Nutzung bereits vorhandener Daten über den Lieferanten und deren Lieferprozesse
- Berücksichtigung von branchenspezifischen Besonderheiten
- Bewahrung einer vertretbaren Kosten-Nutzen-Relation
- Anpassbarkeit der Rechenmethodik und Datenstruktur an zukünftige Normen und Standards und an die ERP-Struktur

Abbildung 8: Aufbau des Berechnungskonzeptes

Das Berechnungskonzept setzt sich aus unterschiedlichen Berechnungsstufen zusammen, die jeweils auch eine Bewertung bzw. einen Vergleich verschiedener Alternativen zulassen sollen. Die jeweils zu erreichenden Werte basieren auf den Ergebnissen der vorherigen
Stufe, wodurch sich ein in sich schlüssiges und aufeinander aufbauendes Vorgehen ergibt. Folgende Werte werden benötigt:

1. Routenwert
2. Anlieferungswert
3. Lieferantenwert

7.1.1 Schritt 1: Ermittlung Routenwert

<table>
<thead>
<tr>
<th>Aufbau der Lieferkette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route LKW</td>
</tr>
<tr>
<td>Route Bahn</td>
</tr>
<tr>
<td>Route Binnenschiff</td>
</tr>
<tr>
<td>Route Seeschiff</td>
</tr>
<tr>
<td>Route Luftfracht</td>
</tr>
</tbody>
</table>

Abbildung 9: Routenwert

Der Routenwert je Verkehrsträger setzt sich aus dem spezifischen Energieverbrauch des jeweiligen Transportmittels, der mit diesem Verkehrsträger überbrückten Distanz und dem jeweiligen Emissionsfaktor zusammen. Die verkehrsträgerspezifischen Routenwerte werden im Anschluss zusammengeführt, um einen Gesamt-Routenwert für die Lieferkette zu generieren.131

131 Bzw. 4 Routenwerte je nach Gestaltungswunsch und Customizing-Einstellung (CO₂-Wert Route TTW / CO₂-Wert Route WTW / THG-Wert Route TTW / THG-Wert Route WTW).
Anhand der Faktoren, die den Energieverbrauch in der Lieferkette maßgeblich beeinflussen, lässt sich je Verkehrsträger eine Formel zur Errechnung des EV$_{\text{spez}}$ ansetzen. Auch hier sieht das Berechnungskonzept eine geeignete Kombination aus verfügbaren Daten von Lieferanten und Vorgabewerten vor. Die hierfür benötigten Tabellen, Informationen und Formeln sind im Vorfeld zu definieren und lassen sich bei einer möglichen Änderung der Datenbasis schnell anpassen.

\[
\text{RW}_{\text{spez}} = \sum (\text{EV}_{\text{spez}} \cdot D \cdot F)
\]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW$_{\text{spez}}$</td>
<td>spezifischer Routenwert</td>
<td>kgCO$_2$e</td>
</tr>
<tr>
<td>EV$_{\text{spez}}$</td>
<td>spezifischer Energieverbrauch</td>
<td>l/km</td>
</tr>
<tr>
<td>D</td>
<td>Distanz</td>
<td>km</td>
</tr>
<tr>
<td>F</td>
<td>Umrechnungsfaktor</td>
<td>kgCO$_2$e/l</td>
</tr>
</tbody>
</table>

Formel 10: spezifischer Routenwert

Der Routenwert ist die Summe aller Teilstreckenwerte, die das Produkt der jeweiligen Distanzen, spezifischen Energieverbräuche und der festgelegten Emissionsart darstellt.

Die Berechnungskomponente Gewicht wird an dieser Stelle bewusst außer Acht gelassen, da diese erst später bei der konkreten Anlieferung eine Rolle spielt. Im Hinblick auf die Zuordenbarkeit und eine mögliche Hinterlegung im ERP-System und somit zur besseren Anwendbarkeit bietet sich bspw. ein Vergleich verschiedener Routen an. Die Methode unter Verwendung des Routenwerts ermöglicht eine Berechnung sowohl für bestehende als auch für potenzielle Lieferanten.

Die Routenwertberechnung legt die möglichen Anlieferungswege und -arten fest. Sie sollte i. d. R. zu Beginn einer Geschäftsbeziehung stattfinden und dann Ausgangsbasis der Emissionsermittlung je Anlieferung zu sein. Der Routenwert (RW$_{\text{spez}}$) ist die Summe aller Teilstreckenwerte, die sich als Produkt der jeweiligen Distanzen (D), spezifischen Energieverbräuche (EV$_{\text{spez}}$) und einer festgelegten Emissionsart (F) ergibt. Die Routenwertberechnung wird in Anlehnung an die Berechnungsformel in drei Teilschritten vorbereitet:

1. Distanzen müssen ermittelt und jedem eingesetzten Verkehrsträger auf einer Route zugeteilt werden.
2. Energieverbräuche müssen ermittelt werden und sich nach den eingesetzten Verkehrsträgern richten.
3. Der Umrechnungsfaktor, der vom Energieverbrauch den Emissionswert (jeweils nach CO$_2$-WTW, CO$_2$-TTW, THG-WTW, THG-TTW) ableitet, muss bestimmt werden. Bei einem Modalsplit in der Lieferkette werden die Teilschritte für jeden Verkehrsträger wiederholt und die Produkte zum Routenwert summiert.\(^\text{132}\)

\(^{132}\text{Anpassung der Einheiten Umrechnung in gCO}_2$/je g Material.

7.1.2 Schritt 2: Ermittlung Anlieferungswert

Im nächsten Schritt werden die Anlieferungswerte (AW) der Lieferanten berechnet. Während der laufenden Geschäftsbeziehung wird bei jeder Anlieferung, die vom Lieferanten getätigt wird, ein Anlieferungswert auf Basis des Routenwertes generiert. Je nach Zielset-
zung werden eine oder mehrere Varianten des Anlieferungswertes ermittelt. Für das Unternehmen, das Empfänger der Ware ist, ergeben sich folgende Voraussetzungen für die Berechnung:

- Das Unternehmen erhält mindestens eine Anlieferung
- Die Anlieferungsrouten des Lieferanten ist über das Lieferavis zuordenbar
- Das Gewicht der angelieferten Ware wird übermittelt
- Pro Route ist der Routenwert hinterlegt

Mit der Anlieferungswertberechnung werden Emissionen für gelieferte Mengen ermittelt. Sie findet in der laufenden Geschäftsbeziehung je Anlieferung statt und liefert Ergebnisse für die Emissionsermittlung je Lieferant. Der Anlieferungswert ist das Produkt aus dem angeforderten Routenwertes und dem Anlieferungsgewicht.

Die Anlieferungswertberechnung wird in zwei Teilschritten vorbereitet:

1. Der Routenwert muss ermittelt werden. Dazu muss bei Anlieferung die Route des Lieferanten identifiziert werden.
2. Die Liefergewichte werden über die gelieferten Artikelmengen und dessen Gewichte im Artikelstamm ermittelt. Das Produkt dieser Werte ergibt den Anlieferungswert.

AW = RW_{spez} \times M

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW</td>
<td>Anlieferungswert</td>
<td>gCO₂e</td>
</tr>
<tr>
<td>RW_{spez}</td>
<td>spezifischer Routenwert</td>
<td>gCO₂e/g Material</td>
</tr>
<tr>
<td>M</td>
<td>Ladungsgewicht der betrachteten Sendung</td>
<td>g</td>
</tr>
</tbody>
</table>

Formel 11: Anlieferungswert

7.1.3 Schritt 3: Ermittlung Lieferantenwert

Der Lieferantenwert (LW) als Ergebnis der Ermittlung im dritten Schritt bildet die Basis für eine Beurteilung des bzw. der Lieferanten mit unterschiedlichem Zweck, bspw. bei Vergabeentscheidungen oder in der Lieferantenentwicklung. Er wird zu einem definierten Stichtag errechnet und bezieht die, in dem für die Beurteilung definierten Betrachtungszeitraum, zugehörigen Lieferantendaten mit ein. Für die Errechnung des Lieferantenwerts werden zunächst die Anlieferungswerte verwendet. Mithilfe der vorhandenen Daten wird die Anzahl der getätigten Anlieferungen im gewünschten Betrachtungszeitraum abgeleitet.

Der Lieferantenwert ist die Summe aller Anlieferungswerte im Verhältnis zur Summe aller zugehörigen Anlieferungsgewichte. Es ergeben sich also durchschnittliche Emissionen je Gramm Material. Die Lieferantenwertberechnung wird in Anlehnung an die Berechnungsformel in zwei Teilschritten vorbereitet.

1. Anlieferungswerte der im Betrachtungszeitraum ermittelten Anlieferungen werden je Lieferant erhoben und summiert.
2. Die zu den Anlieferungen gehörenden Anlieferungsgewichte werden erhoben und summiert.
CO₂ als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

\[LW = \frac{\sum (AW)}{\sum (M)} \]

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW</td>
<td>Lieferantenwert</td>
<td>gCO₂/g geliefertes Material</td>
</tr>
<tr>
<td>AW</td>
<td>Anlieferungswert</td>
<td>gCO₂e</td>
</tr>
<tr>
<td>M</td>
<td>Ladungsgewicht der betrachteten Sendung</td>
<td>g</td>
</tr>
</tbody>
</table>

Formel 12: Lieferantenwert

7.2 Einsatz bei Lieferantenauswahl

7.3 Einsatz in Einkauf und Lieferantenentwicklung

Mit der Integration einer CO₂-bzw. THG-Kennzahl kann die Lieferantenbewertung eines Unternehmens neben der monetären Einschätzung um eine ökologische Komponente erweitert werden. Dies beinhaltet die Minimierung von Umweltschäden bzw. die Vermeidung schädlicher THG-Emissionen. Die Steuerung der Lieferkette im Beschaffungsprozess könnte somit zu einer Steigerung der Performance des gesamten Unternehmens auch unter gleichzeitiger Betrachtung und Verfolgung ökonomischer wie ökologischer Zielgrö-

©02/2016 MHP – A Porsche Company

Weitere Potenziale, die im Einkauf ermöglicht werden, sind u. a.:

- Einfluss auf Verkehrsaufteilung auf die Verkehrsträger (Modal Split) hinsichtlich günstigerer Emissionswerte
- Neubewertung von Local-Sourcing-Strategien, die Transportdistanzen und damit Emissionen über die gesamte Lieferkette reduzieren
- Erweiterung einer TCO-Betrachtung bei Ausschreibungen und Vergabedurchführung hinsichtlich der durch Emissionen verursachten Kosten
- Einsatz als diskretes Steuerungswerkzeug in der Lieferantenentwicklung mit der Festlegung spezifischer Ziele im Sinne eines kontinuierlichen Verbesserungsprozesses bei den Lieferanten

7.4 Einsatz in der Lieferantenbeurteilung

Um die in der o. g. Berechnungsmethode errechneten Lieferantenwerte in der Lieferantenbewertung vergleichbar zu machen, empfiehlt es sich, Durchschnittswerte zu bilden. Um die Durchschnittswerte der Lieferantenwerte zu bilden, werden zunächst an einem definierten Stichtag die unterschiedlichen Lieferantenwerte des zu betrachtenden Auswertungszeitraums ermittelt, was idealerweise automatisiert mittels eines ERP-Systems geschieht. Diese Lieferantenwerte werden je nach gewünschter Einteilung den jeweiligen Bewertungsgruppen zugeordnet. Im Anschluss werden innerhalb dieser Gruppen nach den unten dargestellten Formeln die Durchschnittswerte errechnet. Um den Lieferanten bewerten, einschätzen und mit anderen vergleichen zu können, wird zunächst ein Punkteschlüssel konzipiert. Durch die Punktevergabe wird die Strategie des Unternehmens berücksichtigt. Der Punktevergabeschlüssel kann sich bspw. danach richten, wieviel CO2-/THG-Emissionen noch zusätzlich eingekauft werden dürfen, um so die eigenen CO2-Ziele auf die Lieferanten herunterzurechnen.

Die Durchschnittswertberechnung ermittelt durchschnittliche lieferantenwertbezogene Emissionen je Bewertungsgruppe unter Einbezug aller vorher kalkulierten Lieferantenwerte aus einem definierten Zeitraum. Sie findet im Anschluss an die Lieferantenwertberechnung statt, um eine Basis für die anschließende Punktewertberechnung zu schaffen.
Der Durchschnittswert ist das Verhältnis der Summe aller Lieferantenwerte in einer Bewertungsgruppe zu der Anzahl an Lieferantenwerten und wird in Anlehnung an die Rechnungsformel ebenfalls in zwei Teilschritten berechnet:

1. Lieferantenwerte je Bewertungsgruppe werden ermittelt und summiert.
2. Die Anzahl der summierten Lieferantenwerte wird ermittelt.

Die Division dieser Werte ergibt anschließend den Durchschnittswert. Um die berechneten Werte in eine bestehende Lieferantenbewertung z. B. mit einer gängigen ABC-Klassifizierung zu integrieren, bietet es sich an, Punktewerte zu bilden. So können die errechneten Werte in ein vergleichbares Konstrukt gebracht werden.

Die Punktewertberechnung liefert für jeden Lieferanten einen Punktewert unter Berücksichtigung verschiedener Bewertungsgruppen und Verwendung eines konzipierten Punkteschlüssels. Dabei werden die Punkte in Relation zum Durchschnittswert der Lieferanten verteilt. Der Punktewert bildet somit den Anschluss an die Integration in eine Lieferantenklassifikation und ermöglicht letztendlich eine Einordnung bzw. die Bildung einer Rangfolge unter verschiedenen Lieferanten. Der Punktewert ist das Produkt aus den Punktewerten der Bewertungsgruppen und den jeweils zu definierenden lieferantenrelevanten Gewichten. Die Punktewertberechnung wird in zwei Teilschritten vorbereitet:

1. Für verschiedene Bewertungsgruppen müssen je Lieferant Punktewerte ermittelt werden. Dazu wird nach der dargestellten Formel das jeweilige Verhältnis der positiven oder negativen Abweichung vom Lieferantenwert zum Durchschnittswert in der Bewertungsgruppe ermittelt und mittels definierter Punktewertschlüssel umgelegt.

Es ist grundsätzlich von Bedeutung, die Unternehmens- und Beschaffungsziele sowie die Strategie in der Bewertung zu berücksichtigen. Auf Basis des konzipierten Punkteschlüssels können dann die Punktewerte der Lieferanten errechnet werden.

7.5 Einsatz zur Steuerung der Supply Chain

Die Ausweitung des Einsatzes der CO₂-Emissionen als Kenngröße zur Entscheidungsfindung im Einkauf – also bezüglich der Lieferanten, die in der Wertschöpfung in der direkt vorgelagerten Stufe angesiedelt sind – ist durchaus denkbar. Emissionsdaten könnten als

In beiden Fällen wäre es das Ziel, die Steuerung der Supply Chain über die bereits in Kapitel 1.3 diskutierte Sichtweise hinsichtlich Material-, Wert- und Informationsfluss hinaus zusätzlich auf eine Minimierung der relevanten Emissionen auszuweiten. Ohne Frage würde diese den Koordinationsaufwand und die zu steuernde Komplexität in der Wertschöpfung weiter erhöhen. Andererseits erscheint es plausibel, dass erst dann, wenn nicht mehr jeder einzelne Akteur der Wertschöpfung versucht, sein lokales Optimum beim THG-Ausstoß zu erreichen, für das komplette Netzwerk ein Mehrwert und damit ein realer Wettbewerbsvorteil gegenüber konkurrierenden Wertschöpfungsketten entsteht. So wäre nicht mehr ausschließlich die Eignung der Teile, Produkte oder Leistungen ausschlaggebendes Entscheidungskriterium dafür, ob ein Akteur in eine Supply Chain aufgenommen werden kann. Stattdessen würden die folgenden Aspekte als zusätzliche Eintrittskriterien in eine Supply Chain hinzukommen:

- Die direkt bzw. indirekt durch einen Akteur verursachten Emissionen
- Die Fähigkeit und Bereitschaft, Emissionsdaten bzgl. Produktion und Transport zu ermitteln
- Die Bereitschaft, Emissionsdaten den zwischenbetrieblichen Prozessen beizusteuern
- Die Fähigkeit, den Partnern die Emissionsdaten zu übermitteln und verfügbar zu machen

Eine durchgängige Ermittlung und Mitführung der erzeugten Emissionen bei der Produktentstehung in jeder einzelnen Stufe der Wertschöpfung – bspw. gemäß PAS 2050 / Scope 3 von der Rohstofferzeugung bis hin zum fertigen Produkt und zusätzlich für alle dadurch veranlassten Transporte bis hin zum Endkunden – ließe eine zuverlässige Ermitt-

Gewinnen Emissionen als Steuergröße der Supply Chain an Bedeutung, ist anzunehmen, dass sich zumindest mittelfristig eine Optimierung der Wertschöpfungskette einstellt. Diese lässt neben der Reduktion der Emissionen auch geringere Transportkosten erwarten, was Raum und Potenziale für weitere kooperative im Netzwerk identifizierte Verbesserungen schafft.
8 Fazit und Ausblick

In diesem Fall besteht die Möglichkeit, dass sich CO₂-Emissionen als eine echte neue Steuergröße in der automobilen wie auch in anderen Wertschöpfungsketten etablieren. Dort, wo diese konsequent eingesetzt und als Argument für Optimierungen – sei es hinsichtlich der Auswahl geeigneter Lieferanten, Produktionsstandorte oder auch Transportmittel und -wege – herangezogen werden, besteht eine zusätzliche Chance, nachhaltig die Konkurrenzfähigkeit zu erhöhen.

Der wichtigste und wahrscheinlich zugleich der schwierigste Schritt wird jedoch sein, alle Beteiligten der Wertschöpfung hinsichtlich der Notwendigkeit zu überzeugen und zu einem entsprechenden Umdenken zu bewegen. Konzeptseitig sind zumindest viele Grundlagen gelegt und einer Umsetzung in fortschrittlichen Unternehmen steht im Prinzip nichts entgegen. So wären diese im Falle eines raschen Wandels für die Zukunft gut gerüstet.
Quellenverzeichnis

CO2 als Wettbewerbsfaktor im automobilen Wertschöpfungsnetzwerk

©02/2016 MHP – A Porsche Company

Ihre Ansprechpartner

Eva Maria Streppel
Professional | Supply Chain Management
MHP – A Porsche Company
eva.streppel@mhp.com | +49 (0)151 2030 1477

Prof. Dr.-Ing. Henning Hinderer
Hochschule Pforzheim
henning.hinderer@hs-pforzheim.de | +49 (0)7231 286380

Markus Wambach
Partner | Supply Chain Management
MHP – A Porsche Company
markus.wambach@mhp.com | +49 (0)151 2030 1263